Logotipo do repositório
 

Publicação:
Improving Optimum- Path Forest Classification Using Unsupervised Manifold Learning

dc.contributor.authorAfonso, Luis C. S.
dc.contributor.authorPedronette, Daniel C. G. [UNESP]
dc.contributor.authorDe Souza, Andre N. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T16:59:40Z
dc.date.available2019-10-06T16:59:40Z
dc.date.issued2018-11-26
dc.description.abstractAppropriate metrics are paramount for machine learning and pattern recognition. In Content-based Image Retrieval-oriented applications, low-level features and pairwise-distance metrics are usually not capable of representing similarity among the objects as observed by humans. Therefore, metric learning from available data has become crucial in such applications, but just a few related approaches take into account the contextual information inherent from the samples for a better accuracy performance. In this paper, we propose a novel approach which combines an unsupervised manifold learning algorithm with the Optimum-Path Forest (OPF) classifier to obtain more accurate recognition rates, as well as we show it can outperform standard OPF-based classifiers that are trained over the original manifold. Experiments conducted in some public datasets evidenced the validity of metric learning in the context of OPF classifiers.en
dc.description.affiliationDepartment of Computing UFSCar - Federal University of São Carlos
dc.description.affiliationUNESP - São Paulo State University Institute of Natural Sciences and Technology
dc.description.affiliationUnespUNESP - São Paulo State University Institute of Natural Sciences and Technology
dc.format.extent560-565
dc.identifierhttp://dx.doi.org/10.1109/ICPR.2018.8546061
dc.identifier.citationProceedings - International Conference on Pattern Recognition, v. 2018-August, p. 560-565.
dc.identifier.doi10.1109/ICPR.2018.8546061
dc.identifier.issn1051-4651
dc.identifier.scopus2-s2.0-85059752778
dc.identifier.urihttp://hdl.handle.net/11449/190021
dc.language.isoeng
dc.relation.ispartofProceedings - International Conference on Pattern Recognition
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleImproving Optimum- Path Forest Classification Using Unsupervised Manifold Learningen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.author.lattes8212775960494686[3]
unesp.author.orcid0000-0002-8617-5404[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos