Logotipo do repositório
 

Publicação:
Deep Learning-aided Parkinson's Disease Diagnosis from Handwritten Dynamics

dc.contributor.authorPereira, Clayton R.
dc.contributor.authorWeber, Silke A. T. [UNESP]
dc.contributor.authorHook, Christian
dc.contributor.authorRosa, Gustavo H. [UNESP]
dc.contributor.authorPapa, Joao [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionOstbayer Tech Hsch
dc.date.accessioned2018-11-26T17:39:43Z
dc.date.available2018-11-26T17:39:43Z
dc.date.issued2016-01-01
dc.description.abstractParkinson's Disease (PD) automatic identification in early stages is one of the most challenging medicine-related tasks to date, since a patient may have a similar behaviour to that of a healthy individual at the very early stage of the disease. In this work, we cope with PD automatic identification by means of a Convolutional Neural Network (CNN), which aims at learning features from a signal extracted during the individual's exam by means of a smart pen composed of a series of sensors that can extract information from handwritten dynamics. We have shown CNNs are able to learn relevant information, thus outperforming results obtained from raw data. Also, this work aimed at building a public dataset to be used by researchers worldwide in order to foster PD-related research.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Med Sch Botucatu, Botucatu, SP, Brazil
dc.description.affiliationOstbayer Tech Hsch, Fak Informat Math, Regensburg, Germany
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Med Sch Botucatu, Botucatu, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2010/15566-1
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2015/25739-4
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent340-346
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2016.51
dc.identifier.citation2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 340-346, 2016.
dc.identifier.doi10.1109/SIBGRAPI.2016.51
dc.identifier.issn1530-1834
dc.identifier.urihttp://hdl.handle.net/11449/163002
dc.identifier.wosWOS:000405493800045
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectParkinson's Disease
dc.subjectConvolutional Neural Networks
dc.subjectDeep Learning
dc.titleDeep Learning-aided Parkinson's Disease Diagnosis from Handwritten Dynamicsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos