Logotipo do repositório
 

Publicação:
Wind power forecast using neural networks: Tuning with optimization techniques and error analysis

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The increased integration of wind power into the power system implies many challenges to the network operators, mainly due to the hard to predict and variability of wind power generation. Thus, an accurate wind power forecast is imperative for systems operators, aiming at an efficient and economical wind power operation and integration into the power system. This work addresses the issue of forecasting short-term wind speed and wind power for 1 hour ahead, combining artificial neural networks (ANNs) with optimization techniques on real historical wind speed and wind power data. Levenberg-Marquardt (LM) and particle swarm optimization (PSO) are used as training algorithms to update the weights and bias of the ANN applied to wind speed predictions. The forecasting performance produced by the proposed models are compared with each other, as well as with the benchmark persistence model. Test results show higher performance for ANN-LM wind speed forecasting model, outperforming both ANN-PSO and persistence. The application of ANN-LM to wind power forecast revealed also a good performance, with an average improvement of 2.8% in relation to persistence. An innovative analysis of mean absolute percentage error (MAPE) behaviour in time and in typical days is finally offered in the paper.

Descrição

Palavras-chave

artificial neural network, Levenberg-Marquardt, particle swarm optimization, short-term wind forecast

Idioma

Inglês

Como citar

Wind Energy, v. 23, n. 3, p. 810-824, 2020.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação