Logotipo do repositório
 

Publicação:
Optimizing optimum-path forest classification for huge datasets

dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorCappabianco, Fábio A. M.
dc.contributor.authorFalcão, Alexandre X.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-27T11:24:50Z
dc.date.available2014-05-27T11:24:50Z
dc.date.issued2010-11-18
dc.description.abstractTraditional pattern recognition techniques can not handle the classification of large datasets with both efficiency and effectiveness. In this context, the Optimum-Path Forest (OPF) classifier was recently introduced, trying to achieve high recognition rates and low computational cost. Although OPF was much faster than Support Vector Machines for training, it was slightly slower for classification. In this paper, we present the Efficient OPF (EOPF), which is an enhanced and faster version of the traditional OPF, and validate it for the automatic recognition of white matter and gray matter in magnetic resonance images of the human brain. © 2010 IEEE.en
dc.description.affiliationDepartment of Computing Universidade Estadual Paulista (UNESP), Bauru
dc.description.affiliationInstitute of Computing University of Campinas, Campinas
dc.description.affiliationUnespDepartment of Computing Universidade Estadual Paulista (UNESP), Bauru
dc.format.extent4162-4165
dc.identifierhttp://dx.doi.org/10.1109/ICPR.2010.1012
dc.identifier.citationProceedings - International Conference on Pattern Recognition, p. 4162-4165.
dc.identifier.doi10.1109/ICPR.2010.1012
dc.identifier.issn1051-4651
dc.identifier.lattes9039182932747194
dc.identifier.scopus2-s2.0-78149477256
dc.identifier.urihttp://hdl.handle.net/11449/71961
dc.language.isoeng
dc.relation.ispartofProceedings - International Conference on Pattern Recognition
dc.relation.ispartofsjr0,307
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectBrain image classification
dc.subjectOptimum-Path forest
dc.subjectSupervised classification
dc.subjectSupport Vector machines
dc.subjectAutomatic recognition
dc.subjectBrain images
dc.subjectComputational costs
dc.subjectData sets
dc.subjectForest classification
dc.subjectGray matter
dc.subjectHuman brain
dc.subjectLarge datasets
dc.subjectMagnetic resonance images
dc.subjectPattern recognition techniques
dc.subjectRecognition rates
dc.subjectSupport vector
dc.subjectWhite matter
dc.subjectImage analysis
dc.subjectImage classification
dc.subjectMagnetic resonance
dc.subjectMagnetic resonance imaging
dc.subjectSupport vector machines
dc.subjectClassification (of information)
dc.titleOptimizing optimum-path forest classification for huge datasetsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos