Logotipo do repositório
 

Publicação:
Synthesis of bioactive glass-based coating by plasma electrolytic oxidation: Untangling a new deposition pathway toward titanium implant surfaces

dc.contributor.authorCosta, Raphael C.
dc.contributor.authorSouza, João G.S.
dc.contributor.authorCordeiro, Jairo M.
dc.contributor.authorBertolini, Martinna
dc.contributor.authorde Avila, Erica D. [UNESP]
dc.contributor.authorLanders, Richard
dc.contributor.authorRangel, Elidiane C. [UNESP]
dc.contributor.authorFortulan, Carlos A.
dc.contributor.authorRetamal-Valdes, Belén
dc.contributor.authorda Cruz, Nilson C. [UNESP]
dc.contributor.authorFeres, Magda
dc.contributor.authorBarão, Valentim A.R.
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionSchool of Dental Medicine
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionGuarulhos University
dc.date.accessioned2020-12-12T02:13:53Z
dc.date.available2020-12-12T02:13:53Z
dc.date.issued2020-11-01
dc.description.abstractHypothesis: Although bioactive glass (BG) particle coatings were previously developed by different methods, poor particle adhesion to surfaces and reduced biological effects because of glass crystallization have limited their biomedical applications. To overcome this problem, we have untangled, for the first time, plasma electrolytic oxidation (PEO) as a new pathway for the synthesis of bioactive glass-based coating (PEO-BG) on titanium (Ti) materials. Experiments: Electrolyte solution with bioactive elements (Na2SiO3-5H2O, C4H6O4Ca, NaNO3, and C3H7Na2O6P) was used as a precursor source to obtain a 45S5 bioglass-like composition on a Ti surface by PEO. Subsequently, the PEO-BG coating was investigated with respect to its surface, mechanical, tribological, electrochemical, microbiological, and biological properties, compared with those of machined and sandblasted/acid-etched control surfaces. Findings: PEO treatment produced a coating with complex surface topography, Ti crystalline phases, superhydrophilic status, chemical composition, and oxide layer similar to that of 45S5-BG (~45.0Si, 24.5 Ca, 24.5Na, 6.0P w/v%). PEO-BG enhanced Ti mechanical and tribological properties with higher corrosion resistance. Furthermore, PEO-BG had a positive influence in polymicrobial biofilms, by reducing pathogenic bacterial associated with biofilm-related infections. PEO-BG also showed higher adsorption of blood plasma proteins without cytotoxic effects on human cells, and thus may be considered a promising biocompatible approach for biomedical implants.en
dc.description.affiliationDepartment of Prosthodontics and Periodontology Piracicaba Dental School University of Campinas (UNICAMP), Av. Limeira, 901
dc.description.affiliationOral Health and Diagnostic Sciences Department Division of Periodontology University of Connecticut School of Dental Medicine, 263 Farmington Avenue
dc.description.affiliationDepartment of Dental Materials and Prosthodontics School of Dentistry at Araraquara São Paulo State University (UNESP), R. Humaitá, 1680
dc.description.affiliationInstitute of Physics Gleb Wataghin University of Campinas (UNICAMP) Cidade Universitária Zeferino Vaz, arão Geraldo
dc.description.affiliationLaboratory of Technological Plasmas Institute of Science and Technology São Paulo State University (UNESP), Av. Três de Março, 511
dc.description.affiliationDepartment of Mechanical Engineering University of São Paulo (USP), Trabalhador São Carlense, 400
dc.description.affiliationDepartment of Periodontology Dental Research Division Guarulhos University, Eng Prestes Maia, 88
dc.description.affiliationUnespDepartment of Dental Materials and Prosthodontics School of Dentistry at Araraquara São Paulo State University (UNESP), R. Humaitá, 1680
dc.description.affiliationUnespLaboratory of Technological Plasmas Institute of Science and Technology São Paulo State University (UNESP), Av. Três de Março, 511
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipCentro Nacional de Pesquisa em Energia e Materiais
dc.description.sponsorshipLaboratório Nacional de Nanotecnologia
dc.description.sponsorshipUniversidade Estadual de Campinas
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas
dc.description.sponsorshipIdFAPESP: 2018/04630-2
dc.description.sponsorshipIdFundo de Apoio ao Ensino, à Pesquisa e Extensão, Universidade Estadual de Campinas: 3164/18
dc.format.extent680-698
dc.identifierhttp://dx.doi.org/10.1016/j.jcis.2020.06.102
dc.identifier.citationJournal of Colloid and Interface Science, v. 579, p. 680-698.
dc.identifier.doi10.1016/j.jcis.2020.06.102
dc.identifier.issn1095-7103
dc.identifier.issn0021-9797
dc.identifier.scopus2-s2.0-85087484260
dc.identifier.urihttp://hdl.handle.net/11449/200708
dc.language.isoeng
dc.relation.ispartofJournal of Colloid and Interface Science
dc.sourceScopus
dc.subjectBioactive coatings
dc.subjectBioactive glass
dc.subjectBiofilms
dc.subjectBiomaterials
dc.subjectCorrosion
dc.subjectDental implant
dc.subjectPlasma electrolytic oxidation
dc.subjectProteins
dc.subjectSurface modification
dc.subjectTitanium
dc.titleSynthesis of bioactive glass-based coating by plasma electrolytic oxidation: Untangling a new deposition pathway toward titanium implant surfacesen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-2684-5488[1]
unesp.author.orcid0000-0003-0591-9270[3]
unesp.author.orcid0000-0003-1444-991X[9]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Odontologia, Araraquarapt
unesp.departmentMateriais Odontológicos e Prótese - FOARpt

Arquivos