Logotipo do repositório
 

Publicação:
Multiple-trait genomic evaluation for milk yield and milk quality traits using genomic and phenotypic data in buffalo in Brazil

dc.contributor.authorAspilcueta-Borquis, R. R. [UNESP]
dc.contributor.authorAraujo Neto, F. R.
dc.contributor.authorSantos, D. J. A. [UNESP]
dc.contributor.authorHurtado-Lugo, N. A. [UNESP]
dc.contributor.authorSilva, J. A. V. [UNESP]
dc.contributor.authorTonhati, H. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInst Fed Ciencia & Tecnol Goiano
dc.date.accessioned2018-11-27T10:34:23Z
dc.date.available2018-11-27T10:34:23Z
dc.date.issued2015-01-01
dc.description.abstractThe objective of this study was to compare the multi-trait model using pedigree information and a model using genomic information in addition to pedigree information. We used data from 5896 lactations of 2021 buffalo cows, of which 384 were genotyped using the Illumina Infinium (R) bovine HD BeadChip, considering seven traits related to milk yield (MY305), fat (FY305), protein (PY305), and lactose (LY305), percentages of fat (% F) and protein (% P), and somatic cell score (SCS). We carried out two analyses, one using phenotype and pedigree information (matrix A) and the other using the relationship matrix based on pedigree and genomics information (a single step, matrix H). The (co) variance components were estimated using multiple-trait analysis by the Bayesian inference method. The model included the fixed effects of contemporary groups (herd-year and calving season), and the age of cow at calving as (co) variables (quadratic and linear effect). The additive genetic, permanent environmental, and residual effects were included as random effects in the model. The estimates of heritability using matrix A were 0.25, 0.22, 0.26, 0.25, 0.37, 0.42, and 0.17, while using matrix H the heritability values were 0.25, 0.24, 0.26, 0.26, 0.38, 0.47, and 0.18 for MY305, FY305, PY305, LY305, % F, % P, and SCS, respectively. The estimates of breeding values in the two analyses were similar for the traits studied, but the accuracies were greater when using matrix H (higher than 8% in the traits studied). Therefore, the use of genomic information in the analyses improved the accuracy.en
dc.description.affiliationUniv Estadual Paulista, Fac Med Vet & Zootecnia, Botucatu, SP, Brazil
dc.description.affiliationInst Fed Ciencia & Tecnol Goiano, Rio Verde, Go, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias Agr & Vet, Jaboticabal, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Med Vet & Zootecnia, Botucatu, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias Agr & Vet, Jaboticabal, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent18009-18017
dc.identifierhttp://dx.doi.org/10.4238/2015.December.22.27
dc.identifier.citationGenetics And Molecular Research. Ribeirao Preto: Funpec-editora, v. 14, n. 4, p. 18009-18017, 2015.
dc.identifier.doi10.4238/2015.December.22.27
dc.identifier.issn1676-5680
dc.identifier.urihttp://hdl.handle.net/11449/165096
dc.identifier.wosWOS:000371587400076
dc.language.isoeng
dc.publisherFunpec-editora
dc.relation.ispartofGenetics And Molecular Research
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectAccuracy
dc.subjectGenomics
dc.subjectMilk quality
dc.titleMultiple-trait genomic evaluation for milk yield and milk quality traits using genomic and phenotypic data in buffalo in Brazilen
dc.typeArtigo
dcterms.rightsHolderFunpec-editora
dspace.entity.typePublication
unesp.departmentZootecnia - FCAVpt

Arquivos