Logo do repositório
 

Modeling and identification of fertility maps using artificial neural networks

dc.contributor.authorUlson, Jose Alfredo Covolan [UNESP]
dc.contributor.authorda Silva, Ivan Nunes [UNESP]
dc.contributor.authorBenez, Sergio Hugo [UNESP]
dc.contributor.authorBoas, Roberto L V [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:19:59Z
dc.date.available2014-05-27T11:19:59Z
dc.date.issued2000-12-01
dc.description.abstractThe application of agricultural fertilizers using variable rates along the field can be made through fertility maps previously elaborated or through real-time sensors. In most of the cases applies maps previously elaborated. These maps are identified from analyzes done in soil samples collected regularly (a sample for each field cell) or irregularly along the field. At the moment, mathematical interpolation methods such as nearest neighbor, local average, weighted inverse distance, contouring and kriging are used for predicting the variables involved with elaboration of fertility maps. However, some of these methods present deficiencies that can generate different fertility maps for a same data set. Moreover, such methods can generate inprecise maps to be used in precision farming. In this paper, artificial neural networks have been applied for elaboration and identification of precise fertility maps which can reduce the production costs and environmental impacts.en
dc.description.affiliationFCA-UNESP, Botucatu
dc.description.affiliationUnespFCA-UNESP, Botucatu
dc.format.extent2673-2678
dc.identifierhttp://dx.doi.org/10.1109/ICSMC.2000.884399
dc.identifier.citationProceedings of the IEEE International Conference on Systems, Man and Cybernetics, v. 4, p. 2673-2678.
dc.identifier.doi10.1109/ICSMC.2000.884399
dc.identifier.issn0884-3627
dc.identifier.issn1062-922X
dc.identifier.scopus2-s2.0-0034504123
dc.identifier.urihttp://hdl.handle.net/11449/66338
dc.identifier.wosWOS:000166106900465
dc.language.isoeng
dc.relation.ispartofProceedings of the IEEE International Conference on Systems, Man and Cybernetics
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectFertilizersen
dc.subjectInterpolationen
dc.subjectMathematical modelsen
dc.subjectReal time systemsen
dc.subjectSensorsen
dc.subjectSoilsen
dc.subjectFertility mapsen
dc.subjectNeural networksen
dc.titleModeling and identification of fertility maps using artificial neural networksen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication

Arquivos