Logotipo do repositório
 

Publicação:
Sumarização abstrativa de textos em português utilizando aprendizado de máquina

Carregando...
Imagem de Miniatura

Orientador

Papa, João Paulo

Coorientador

Pós-graduação

Ciência da Computação - FC

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Estadual Paulista (Unesp)

Tipo

Dissertação de mestrado

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Resumo (português)

A sumarização automática consiste no processo de capturar as informações mais relevantes de um texto e condensá-las em um texto compreensível em linguagem natural. Este processo pode ser classificado como sumarização extrativa, quando identifica as sentenças mais importantes do texto de origem para compor o sumário utilizando as mesmas sentenças, ou sumarização abstrativa, quando gera novas sentenças baseadas nas informações mais relevantes do texto de origem. Pesquisas em sumarização automática abstrativa para o português brasileiro ainda são escassas, especialmente para sumarização abstrativa baseada em aprendizado em profundidade. Por este motivo, este consiste no foco desta pesquisa. Nesta dissertação são apresentados experimentos com modelos pré-treinados, ajustados para as bases TeMário, CSTNews e para os textos em português da WikiLingua e XL-Sum. Os resultados apresentados por estes experimentos são relativamente satisfatórios, ainda apresentando problemas, dos quais a maioria são comuns em sumarização abstrativa, mas que podem servir como ponto de partida para futuras pesquisas.

Resumo (português)

Automatic summarization captures the most relevant information in a text and condenses it into an understandable text in natural language. This process can be classified as extractive summarization, which identifies the most important sentences from the source text and composes the summary using that very same sentences, or abstractive summarization, which generates new sentences based on the most relevant information from the source text. Research on Brazilian Portuguese-based abstractive summarization is still scarce, especially for deep learning-based abstractive summarization. For this reason, this is the focus of this research. This master thesis presents experiments with pre-trained models, fine-tuned for the TeMário and CSTNews databases and for the texts in Portuguese from WikiLingua and XL-Sum. The results presented by these experiments are relatively satisfactory, still presenting problems, most of which are common in abstractive summarization, but can serve as a starting point for future research.

Descrição

Palavras-chave

Processamento de Linguagem Natural, Aprendizado de Máquina, Sumarização, Sumarização Abstrativa, Português Brasileiro, Natural language processing, Machine learning, Summarization, Abstractive summarization, Brazilian portuguese

Idioma

Português

Como citar

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação