Logotipo do repositório
 

Publicação:
Critical points on growth curves in autoregressive and mixed models

dc.contributor.authorde Pinho, Sheila Zambello [UNESP]
dc.contributor.authorde Carvalho, Lídia Raquel [UNESP]
dc.contributor.authorMischan, Martha Maria [UNESP]
dc.contributor.authorPassos, José Raimundo de Souza [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T07:14:25Z
dc.date.available2022-04-29T07:14:25Z
dc.date.issued2014-01-01
dc.description.abstractAdjusting autoregressive and mixed models to growth data fits discontinuous functions, which makes it difficult to determine critical points. In this study we propose a new approach to determine the critical stability point of cattle growth using a first-order autoregressive model and a mixed model with random asymptote, using the deterministic portion of the models. Three functions were compared: logistic, Gompertz, and Richards. The Richards autoregressive model yielded the best fit, but the critical growth values were adjusted very early, and for this purpose the Gompertz model was more appropriate.en
dc.description.affiliationSão Paulo State University/IBB Dept. of Biostatistics, C.P 510, 18618-970 - Botucatu, SP
dc.description.affiliationUnespSão Paulo State University/IBB Dept. of Biostatistics, C.P 510, 18618-970 - Botucatu, SP
dc.format.extent30-37
dc.identifierhttp://dx.doi.org/10.1590/S0103-90162014000100004
dc.identifier.citationScientia Agricola, v. 71, n. 1, p. 30-37, 2014.
dc.identifier.doi10.1590/S0103-90162014000100004
dc.identifier.issn0103-9016
dc.identifier.issn1678-992X
dc.identifier.scopus2-s2.0-84897770760
dc.identifier.urihttp://hdl.handle.net/11449/227663
dc.language.isoeng
dc.relation.ispartofScientia Agricola
dc.sourceScopus
dc.titleCritical points on growth curves in autoregressive and mixed modelsen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentBioestatística - IBBpt

Arquivos