Existence of a BV solution for a mean curvature equation
| dc.contributor.author | Pimenta, Marcos T.O. [UNESP] | |
| dc.contributor.author | Montenegro, Marcelo | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
| dc.date.accessioned | 2022-04-28T19:42:09Z | |
| dc.date.available | 2022-04-28T19:42:09Z | |
| dc.date.issued | 2021-10-25 | |
| dc.description.abstract | We prove the existence of a bounded variation solution for a quasilinear elliptic problem involving the mean curvature operator and a sublinear nonlinearity. We obtain such a solution as the limit of the solutions of another quasilinear elliptic problem involving a parameter p>1 as p→1+. The analysis requires estimates independent on p, as well as a precise version of the weak Euler-Lagrange equation satisfied by the solution. | en |
| dc.description.affiliation | Universidade Estadual Paulista Unesp Departamento de Matemática e Computação, Rua Roberto Simonsen, 305 | |
| dc.description.affiliation | Universidade Estadual de Campinas IMECC Departamento de Matemática, Rua Sérgio Buarque de Holanda, 651 | |
| dc.description.affiliationUnesp | Universidade Estadual Paulista Unesp Departamento de Matemática e Computação, Rua Roberto Simonsen, 305 | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | FAPESP: 2019/02512-5 | |
| dc.description.sponsorshipId | FAPESP: 2019/14330-9 | |
| dc.description.sponsorshipId | CNPq: 303788/2018-6 | |
| dc.format.extent | 51-64 | |
| dc.identifier | http://dx.doi.org/10.1016/j.jde.2021.07.021 | |
| dc.identifier.citation | Journal of Differential Equations, v. 299, p. 51-64. | |
| dc.identifier.doi | 10.1016/j.jde.2021.07.021 | |
| dc.identifier.issn | 1090-2732 | |
| dc.identifier.issn | 0022-0396 | |
| dc.identifier.scopus | 2-s2.0-85111297667 | |
| dc.identifier.uri | http://hdl.handle.net/11449/222061 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Journal of Differential Equations | |
| dc.source | Scopus | |
| dc.subject | Existence of solution | |
| dc.subject | Functions of bounded variation | |
| dc.subject | Geometric measure theory | |
| dc.subject | Mean curvature equation | |
| dc.title | Existence of a BV solution for a mean curvature equation | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | bbcf06b3-c5f9-4a27-ac03-b690202a3b4e | |
| relation.isOrgUnitOfPublication.latestForDiscovery | bbcf06b3-c5f9-4a27-ac03-b690202a3b4e | |
| unesp.author.orcid | 0000-0003-4961-3038[1] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudente | pt |
