Logotipo do repositório
 

Publicação:
Computational methods for pigmented skin lesion classification in images: review and future trends

dc.contributor.authorOliveira, Roberta B.
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorPereira, Aledir S. [UNESP]
dc.contributor.authorTavares, Joao Manuel R. S.
dc.contributor.institutionUniv Porto
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:45:00Z
dc.date.available2018-11-26T17:45:00Z
dc.date.issued2018-02-01
dc.description.abstractSkin cancer is considered as one of the most common types of cancer in several countries, and its incidence rate has increased in recent years. Melanoma cases have caused an increasing number of deaths worldwide, since this type of skin cancer is the most aggressive compared to other types. Computational methods have been developed to assist dermatologists in early diagnosis of skin cancer. An overview of the main and current computational methods that have been proposed for pattern analysis and pigmented skin lesion classification is addressed in this review. In addition, a discussion about the application of such methods, as well as future trends, is also provided. Several methods for feature extraction from both macroscopic and dermoscopic images and models for feature selection are introduced and discussed. Furthermore, classification algorithms and evaluation procedures are described, and performance results for lesion classification and pattern analysis are given.en
dc.description.affiliationUniv Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Rua Dr Roberto Frias, P-4200465 Oporto, Portugal
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias, Dept Comp, Av Eng Luiz Edmundo Carrijo 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Inst Biociencias Letras & Ciencias Exatas, Dept Ciencias Comput & Estat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias, Dept Comp, Av Eng Luiz Edmundo Carrijo 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Biociencias Letras & Ciencias Exatas, Dept Ciencias Comput & Estat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipEuropean Regional Development Funds (ERDF), through the Operational Programme Thematic Factors of Competitiveness'' (COMPETE)
dc.description.sponsorshipPortuguese Funds, through Fundacao para a Ciencia e a Tecnologia (FCT)
dc.description.sponsorshipScience and Technology for Competitive and Sustainable Industries
dc.description.sponsorshipPrograma Operacional Regional do Norte'' (NORTE), through Fundo Europeu de Desenvolvimento Regional'' (FEDER)
dc.description.sponsorshipIdPortuguese Funds, through Fundacao para a Ciencia e a Tecnologia (FCT): FCOMP-01-0124-FEDER-028160/PTDC/BBB-BMD/3088/2012
dc.description.sponsorshipIdScience and Technology for Competitive and Sustainable Industries: NORTE-01-0145-FEDER-000022-Sci-Tech
dc.format.extent613-636
dc.identifierhttp://dx.doi.org/10.1007/s00521-016-2482-6
dc.identifier.citationNeural Computing & Applications. New York: Springer, v. 29, n. 3, p. 613-636, 2018.
dc.identifier.doi10.1007/s00521-016-2482-6
dc.identifier.fileWOS000424058500001.pdf
dc.identifier.issn0941-0643
dc.identifier.urihttp://hdl.handle.net/11449/163796
dc.identifier.wosWOS:000424058500001
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofNeural Computing & Applications
dc.relation.ispartofsjr0,700
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectPattern analysis
dc.subjectFeature extraction and selection
dc.subjectClassification methods
dc.subjectMacroscopic and dermoscopic images
dc.titleComputational methods for pigmented skin lesion classification in images: review and future trendsen
dc.typeResenha
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentComputação - FCpt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000424058500001.pdf
Tamanho:
1.32 MB
Formato:
Adobe Portable Document Format
Descrição: