Publicação: Computational methods for pigmented skin lesion classification in images: review and future trends
dc.contributor.author | Oliveira, Roberta B. | |
dc.contributor.author | Papa, Joao P. [UNESP] | |
dc.contributor.author | Pereira, Aledir S. [UNESP] | |
dc.contributor.author | Tavares, Joao Manuel R. S. | |
dc.contributor.institution | Univ Porto | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:45:00Z | |
dc.date.available | 2018-11-26T17:45:00Z | |
dc.date.issued | 2018-02-01 | |
dc.description.abstract | Skin cancer is considered as one of the most common types of cancer in several countries, and its incidence rate has increased in recent years. Melanoma cases have caused an increasing number of deaths worldwide, since this type of skin cancer is the most aggressive compared to other types. Computational methods have been developed to assist dermatologists in early diagnosis of skin cancer. An overview of the main and current computational methods that have been proposed for pattern analysis and pigmented skin lesion classification is addressed in this review. In addition, a discussion about the application of such methods, as well as future trends, is also provided. Several methods for feature extraction from both macroscopic and dermoscopic images and models for feature selection are introduced and discussed. Furthermore, classification algorithms and evaluation procedures are described, and performance results for lesion classification and pattern analysis are given. | en |
dc.description.affiliation | Univ Porto, Fac Engn, Dept Engn Mecan, Inst Ciencia & Inovacao Engn Mecan & Engn Ind, Rua Dr Roberto Frias, P-4200465 Oporto, Portugal | |
dc.description.affiliation | Univ Estadual Paulista, Fac Ciencias, Dept Comp, Av Eng Luiz Edmundo Carrijo 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Inst Biociencias Letras & Ciencias Exatas, Dept Ciencias Comput & Estat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Fac Ciencias, Dept Comp, Av Eng Luiz Edmundo Carrijo 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Biociencias Letras & Ciencias Exatas, Dept Ciencias Comput & Estat, Rua Cristovao Colombo 2265, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | European Regional Development Funds (ERDF), through the Operational Programme Thematic Factors of Competitiveness'' (COMPETE) | |
dc.description.sponsorship | Portuguese Funds, through Fundacao para a Ciencia e a Tecnologia (FCT) | |
dc.description.sponsorship | Science and Technology for Competitive and Sustainable Industries | |
dc.description.sponsorship | Programa Operacional Regional do Norte'' (NORTE), through Fundo Europeu de Desenvolvimento Regional'' (FEDER) | |
dc.description.sponsorshipId | Portuguese Funds, through Fundacao para a Ciencia e a Tecnologia (FCT): FCOMP-01-0124-FEDER-028160/PTDC/BBB-BMD/3088/2012 | |
dc.description.sponsorshipId | Science and Technology for Competitive and Sustainable Industries: NORTE-01-0145-FEDER-000022-Sci-Tech | |
dc.format.extent | 613-636 | |
dc.identifier | http://dx.doi.org/10.1007/s00521-016-2482-6 | |
dc.identifier.citation | Neural Computing & Applications. New York: Springer, v. 29, n. 3, p. 613-636, 2018. | |
dc.identifier.doi | 10.1007/s00521-016-2482-6 | |
dc.identifier.file | WOS000424058500001.pdf | |
dc.identifier.issn | 0941-0643 | |
dc.identifier.uri | http://hdl.handle.net/11449/163796 | |
dc.identifier.wos | WOS:000424058500001 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Neural Computing & Applications | |
dc.relation.ispartofsjr | 0,700 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Pattern analysis | |
dc.subject | Feature extraction and selection | |
dc.subject | Classification methods | |
dc.subject | Macroscopic and dermoscopic images | |
dc.title | Computational methods for pigmented skin lesion classification in images: review and future trends | en |
dc.type | Resenha | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Computação - FC | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000424058500001.pdf
- Tamanho:
- 1.32 MB
- Formato:
- Adobe Portable Document Format
- Descrição: