Logo do repositório
 

3-Dimensional hopf bifurcation via averaging theory

dc.contributor.authorLlibre, Jaume
dc.contributor.authorBuzzi, Claudio A. [UNESP]
dc.contributor.authorDa Silva, Paulo R. [UNESP]
dc.contributor.institutionUniversitat Autònoma de Barcelona
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-27T11:22:24Z
dc.date.available2014-05-27T11:22:24Z
dc.date.issued2007-03-01
dc.description.abstractWe consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems.en
dc.description.affiliationDepartament de Matemàtiques Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona
dc.description.affiliationDepartamento de Matemática Universidade Estadual Paulista-UNESP, S. Paulo
dc.description.affiliationUnespDepartamento de Matemática Universidade Estadual Paulista-UNESP, S. Paulo
dc.format.extent529-540
dc.identifierhttp://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstract
dc.identifierhttp://dx.doi.org/10.3934/dcds.2007.17.529
dc.identifier.citationDiscrete and Continuous Dynamical Systems, v. 17, n. 3, p. 529-540, 2007.
dc.identifier.doi10.3934/dcds.2007.17.529
dc.identifier.file2-s2.0-34247228649.pdf
dc.identifier.issn1078-0947
dc.identifier.lattes6682867760717445
dc.identifier.orcid0000-0003-2037-8417
dc.identifier.scopus2-s2.0-34247228649
dc.identifier.urihttp://hdl.handle.net/11449/69533
dc.identifier.wosWOS:000242696700005
dc.language.isoeng
dc.relation.ispartofDiscrete and Continuous Dynamical Systems
dc.relation.ispartofjcr0.976
dc.relation.ispartofsjr1,592
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectAveraging theory
dc.subjectHopf bifurcation
dc.subjectLorenz system
dc.title3-Dimensional hopf bifurcation via averaging theoryen
dc.typeArtigo
dcterms.licensehttp://aimsciences.org/journals/tex-sample/CopyRightAgreement.pdf
dspace.entity.typePublication
unesp.author.lattes6682867760717445[2]
unesp.author.orcid0000-0003-2037-8417[2]

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-34247228649.pdf
Tamanho:
65.51 KB
Formato:
Adobe Portable Document Format

Coleções