3-Dimensional hopf bifurcation via averaging theory
dc.contributor.author | Llibre, Jaume | |
dc.contributor.author | Buzzi, Claudio A. [UNESP] | |
dc.contributor.author | Da Silva, Paulo R. [UNESP] | |
dc.contributor.institution | Universitat Autònoma de Barcelona | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-27T11:22:24Z | |
dc.date.available | 2014-05-27T11:22:24Z | |
dc.date.issued | 2007-03-01 | |
dc.description.abstract | We consider the Lorenz system ẋ = σ(y - x), ẏ = rx - y - xz and ż = -bz + xy; and the Rössler system ẋ = -(y + z), ẏ = x + ay and ż = b - cz + xz. Here, we study the Hopf bifurcation which takes place at q± = (±√br - b,±√br - b, r - 1), in the Lorenz case, and at s± = (c+√c2-4ab/2, -c+√c2-4ab/2a, c±√c2-4ab/2a) in the Rössler case. As usual this Hopf bifurcation is in the sense that an one-parameter family in ε of limit cycles bifurcates from the singular point when ε = 0. Moreover, we can determine the kind of stability of these limit cycles. In fact, for both systems we can prove that all the bifurcated limit cycles in a neighborhood of the singular point are either a local attractor, or a local repeller, or they have two invariant manifolds, one stable and the other unstable, which locally are formed by two 2-dimensional cylinders. These results are proved using averaging theory. The method of studying the Hopf bifurcation using the averaging theory is relatively general and can be applied to other 3- or n-dimensional differential systems. | en |
dc.description.affiliation | Departament de Matemàtiques Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona | |
dc.description.affiliation | Departamento de Matemática Universidade Estadual Paulista-UNESP, S. Paulo | |
dc.description.affiliationUnesp | Departamento de Matemática Universidade Estadual Paulista-UNESP, S. Paulo | |
dc.format.extent | 529-540 | |
dc.identifier | http://aimsciences.org/journals/pdfs.jsp?paperID=2122&mode=abstract | |
dc.identifier | http://dx.doi.org/10.3934/dcds.2007.17.529 | |
dc.identifier.citation | Discrete and Continuous Dynamical Systems, v. 17, n. 3, p. 529-540, 2007. | |
dc.identifier.doi | 10.3934/dcds.2007.17.529 | |
dc.identifier.file | 2-s2.0-34247228649.pdf | |
dc.identifier.issn | 1078-0947 | |
dc.identifier.lattes | 6682867760717445 | |
dc.identifier.orcid | 0000-0003-2037-8417 | |
dc.identifier.scopus | 2-s2.0-34247228649 | |
dc.identifier.uri | http://hdl.handle.net/11449/69533 | |
dc.identifier.wos | WOS:000242696700005 | |
dc.language.iso | eng | |
dc.relation.ispartof | Discrete and Continuous Dynamical Systems | |
dc.relation.ispartofjcr | 0.976 | |
dc.relation.ispartofsjr | 1,592 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Scopus | |
dc.subject | Averaging theory | |
dc.subject | Hopf bifurcation | |
dc.subject | Lorenz system | |
dc.title | 3-Dimensional hopf bifurcation via averaging theory | en |
dc.type | Artigo | |
dcterms.license | http://aimsciences.org/journals/tex-sample/CopyRightAgreement.pdf | |
dspace.entity.type | Publication | |
unesp.author.lattes | 6682867760717445[2] | |
unesp.author.orcid | 0000-0003-2037-8417[2] |
Arquivos
Pacote original
1 - 1 de 1
Carregando...
- Nome:
- 2-s2.0-34247228649.pdf
- Tamanho:
- 65.51 KB
- Formato:
- Adobe Portable Document Format