Logo do repositório

A Comprehensive Study on Unsupervised Transfer Learning for Structural Health Monitoring of Bridges Using Joint Distribution Adaptation

dc.contributor.authorSouza, Laura
dc.contributor.authorYano, Marcus Omori [UNESP]
dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.authorFigueiredo, Eloi
dc.contributor.institutionUniversidade Federal do Pará (UFPA)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionLusófona University
dc.contributor.institutionUniversidade de Lisboa
dc.date.accessioned2025-04-29T20:05:04Z
dc.date.issued2024-08-01
dc.description.abstractBridges are crucial transportation infrastructures with significant socioeconomic impacts, necessitating continuous assessment to ensure safe operation. However, the vast number of bridges and the technical and financial challenges of maintaining permanent monitoring systems in every single bridge make the implementation of structural health monitoring (SHM) difficult for authorities. Unsupervised transfer learning, which reuses experimental or numerical data from well-known bridges to detect damage on other bridges with limited monitoring response data, has emerged as a promising solution. This solution can reduce SHM costs while ensuring the safety of bridges with similar characteristics. This paper investigates the limitations, challenges, and opportunities of unsupervised transfer learning via domain adaptation across datasets from various prestressed concrete bridges under distinct operational and environmental conditions. A feature-based transfer learning approach is proposed, where the joint distribution adaptation method is used for domain adaptation. As the main advantage, this study leverages the generalization of SHM for damage detection in prestressed concrete bridges with limited long-term monitoring data.en
dc.description.affiliationApplied Electromagnetism Laboratory Universidade Federal do Pará, R. Augusto Corrêa, Guamá 01, PA
dc.description.affiliationDepartamento de Engenharia Mecânica UNESP—Universidade Estadual Paulista, SP
dc.description.affiliationFaculty of Engineering Lusófona University, Campo Grande 376
dc.description.affiliationCERIS Instituto Superior Técnico Universidade de Lisboa, Av. Rovisco Pais 1
dc.description.affiliationUnespDepartamento de Engenharia Mecânica UNESP—Universidade Estadual Paulista, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 24/00720-8
dc.identifierhttp://dx.doi.org/10.3390/infrastructures9080131
dc.identifier.citationInfrastructures, v. 9, n. 8, 2024.
dc.identifier.doi10.3390/infrastructures9080131
dc.identifier.issn2412-3811
dc.identifier.scopus2-s2.0-85202463512
dc.identifier.urihttps://hdl.handle.net/11449/306038
dc.language.isoeng
dc.relation.ispartofInfrastructures
dc.sourceScopus
dc.subjectbridges
dc.subjectdomain adaptation
dc.subjectjoint distribution adaptation
dc.subjectpattern recognition
dc.subjectstructural health monitoring
dc.subjectunsupervised transfer learning
dc.titleA Comprehensive Study on Unsupervised Transfer Learning for Structural Health Monitoring of Bridges Using Joint Distribution Adaptationen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-6430-3746[3]
unesp.author.orcid0000-0002-9168-6903[4]

Arquivos

Coleções