Logotipo do repositório
 

Publicação:
Geometry and equisingularity of finitely determined map germs from to C-n to C-3, n > 2

dc.contributor.authorMiranda, A. J.
dc.contributor.authorJorge Perez, V. H.
dc.contributor.authorRizziolli, E. C. [UNESP]
dc.contributor.authorSaia, M. J.
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T16:32:48Z
dc.date.available2018-11-26T16:32:48Z
dc.date.issued2016-05-01
dc.description.abstractIn this article we describe the geometry and the Whitney equisingularity of finitely determined map germs f :(C-n, 0) -> (C-3, 0) with n >= 3. In the study of the geometry, we first investigate the critical locus Sigma(f) of the germ, which is in the source. Then the discriminant Delta(f), the image of the critical locus by the germ f, is studied. Last, but not least we investigate the set X(f), which is the inverse image by f of the discriminant. If the critical locus is not empty, the set X(f) is an hypersurface in the source that has nonisolated singularity at the origin. Concerning the Whitney equisingularity of families, we use some of the properties of the strata to prove that the Whitney equisingularity of an unfolding F is equivalent to the constancy of the Le numbers of the hypersurfaces Delta(f) and X(f). From this study we describe some relationship among the invariants needed to describe the Whitney equisingularity of families in these dimensions, we reduce the number of invariants needed to a total of 2n + 2, which improves substantially the number required by Gaffney's theorem.en
dc.description.affiliationUniv Fed Uberlandia, Fac Med, Av Engenheiro Dinz 1178,CP 593, BR-38400 Uberlandia, MG, Brazil
dc.description.affiliationUniv Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, BR-13560 Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Inst Geociencias & Ciencias Exatas, Dept Matemat, Rio Claro, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Geociencias & Ciencias Exatas, Dept Matemat, Rio Claro, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.format.extent439-454
dc.identifierhttp://dx.doi.org/10.1007/s13163-015-0187-5
dc.identifier.citationRevista Matematica Complutense. Milan: Springer-verlag Italia Srl, v. 29, n. 2, p. 439-454, 2016.
dc.identifier.doi10.1007/s13163-015-0187-5
dc.identifier.fileWOS000374908300007.pdf
dc.identifier.issn1139-1138
dc.identifier.urihttp://hdl.handle.net/11449/161451
dc.identifier.wosWOS:000374908300007
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofRevista Matematica Complutense
dc.relation.ispartofsjr1,040
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectGeometry of map germs
dc.subjectWhitney equisingularity
dc.subjectNumerical invariants
dc.subjectLa numbers
dc.titleGeometry and equisingularity of finitely determined map germs from to C-n to C-3, n > 2en
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentMatemática - IGCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000374908300007.pdf
Tamanho:
534.27 KB
Formato:
Adobe Portable Document Format
Descrição: