Publicação: Role of Iron Phthalocyanine Coordination in Catecholamines Detection
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Mdpi
Tipo
Artigo
Direito de acesso
Resumo
Catecholamines are an important class of neurotransmitters responsible for regularizing, controlling, and treating neural diseases. Based on control and diseases treatment, the development of methodology and dives to sensing is a promissory technology area. This work evaluated the role of iron phthalocyanine coordination (FePc) with the specific groups from catecholamine molecules (L-dopa, dopamine, epinephrine, and the amino acid tyrosine) and the effect of this coordination on electrochemical behavior. The in situ coordination analysis was performed through isotherms pi-A of FePc Langmuir films in the absence and presence of catecholamines. The pi-A isotherm indicates a strong interaction between FePc monolayer and L-Dopa and DA, which present a catechol group and a side chain with a protonated amino group (-NH3+). These strong interactions with catechol and amine groups were confirmed by characterization at the molecular level using the surface-enhanced Raman spectroscopy (SERS) from a Langmuir-Schaefer monolayer deposited onto Ag surfaces. The electrochemical measurements present a similar tendency, with lower oxidation potential observed to DA>L-Dopa>Ep. The results corroborate that the coordination of the analyte on the electron mediator surface plays an essential role in an electrochemical sensing application. The FePc LS film was applied as a sensor in tablet drug samples, showing a uniformity of content of 96% for detecting active compounds present in the L-Dopa drug samples.
Descrição
Palavras-chave
catecholamines, iron coordination, phthalocyanines, electrochemical sensing
Idioma
Inglês
Como citar
Surfaces. Basel: Mdpi, v. 4, n. 4, p. 323-335, 2021.