Logotipo do repositório
 

Publicação:
Projections Onto Convex Sets through Particle Swarm Optimization and its application for remote sensing image restoration

dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorFonseca, Leila M. G.
dc.contributor.authorde Carvalho, Lino A. S.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais (INPE)
dc.date.accessioned2014-05-20T13:25:57Z
dc.date.available2014-05-20T13:25:57Z
dc.date.issued2010-10-01
dc.description.abstractImage restoration attempts to enhance images corrupted by noise and blurring effects. Iterative approaches can better control the restoration algorithm in order to find a compromise of restoring high details in smoothed regions without increasing the noise. Techniques based on Projections Onto Convex Sets (POCS) have been extensively used in the context of image restoration by projecting the solution onto hyperspaces until some convergence criteria be reached. It is expected that an enhanced image can be obtained at the final of an unknown number of projections. The number of convex sets and its combinations allow designing several image restoration algorithms based on POCS. Here, we address two convex sets: Row-Action Projections (RAP) and Limited Amplitude (LA). Although RAP and LA have already been used in image restoration domain, the former has a relaxation parameter (A) that strongly depends on the characteristics of the image that will be restored, i.e., wrong values of A can lead to poorly restoration results. In this paper, we proposed a hybrid Particle Swarm Optimization (PS0)-POCS image restoration algorithm, in which the A value is obtained by PSO to be further used to restore images by POCS approach. Results showed that the proposed PSO-based restoration algorithm outperformed the widely used Wiener and Richardson-Lucy image restoration algorithms. (C) 2010 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Comp Sci, Bauru, Brazil
dc.description.affiliationNatl Inst Space Res, Image Proc Div, Sao Jose Dos Campos, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Comp Sci, Bauru, Brazil
dc.format.extent1876-1886
dc.identifierhttp://dx.doi.org/10.1016/j.patrec.2010.02.012
dc.identifier.citationPattern Recognition Letters. Amsterdam: Elsevier B.V., v. 31, n. 13, p. 1876-1886, 2010.
dc.identifier.doi10.1016/j.patrec.2010.02.012
dc.identifier.issn0167-8655
dc.identifier.lattes9039182932747194
dc.identifier.urihttp://hdl.handle.net/11449/8289
dc.identifier.wosWOS:000282146800015
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofPattern Recognition Letters
dc.relation.ispartofjcr1.952
dc.relation.ispartofsjr0,662
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectImage restorationen
dc.subjectProjections Onto Convex Setsen
dc.subjectParticle Swarm Optimizationen
dc.subjectCBERS-2Ben
dc.titleProjections Onto Convex Sets through Particle Swarm Optimization and its application for remote sensing image restorationen
dc.typeArtigo
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes9039182932747194
unesp.author.orcid0000-0002-6494-7514[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: