Logotipo do repositório
 

Publicação:
Fast petroleum well drilling monitoring through optimum-path forest

dc.contributor.authorGuilherme, Ivan Rizzo [UNESP]
dc.contributor.authorMarana, Aparecido Nilceu [UNESP]
dc.contributor.authorPapa, João Paulo [UNESP]
dc.contributor.authorChiachia, Giovani
dc.contributor.authorFalcão, Alexandre X.
dc.contributor.authorMiura, Kazuo
dc.contributor.authorFerreira, Marystela [UNESP]
dc.contributor.authorTorres, Francisco
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionPETROBRÁS
dc.date.accessioned2014-05-27T11:25:22Z
dc.date.available2014-05-27T11:25:22Z
dc.date.issued2010-12-01
dc.description.abstractAutomatic inspection of petroleum well drilling has became paramount in the last years, mainly because of the crucial importance of saving time and operations during the drilling process in order to avoid some problems, such as the collapse of the well borehole walls. In this paper, we extended another work by proposing a fast petroleum well drilling monitoring through a modified version of the Optimum-Path Forest classifier. Given that the cutting's volume at the vibrating shale shaker can provide several information about drilling, we used computer vision techniques to extract texture informations from cutting images acquired by a digital camera. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and effciency. We used the Optimum-Path Forest (OPF), EOPF (Efficient OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP) Support Vector Machines (SVM), and a Bayesian Classifier (BC) to assess the robustness of our proposed schema for petroleum well drilling monitoring through cutting image analysis.en
dc.description.affiliationDepartment of Statistics Applied Mathematics and Computing Univ Estadual Paulista
dc.description.affiliationDepartment of Computing UNESP Univ. Estadual Paulista
dc.description.affiliationInstitute of Computing State University of Campinas
dc.description.affiliationBrazilian Petroleum PETROBRÁS
dc.description.affiliationUnespDepartment of Statistics Applied Mathematics and Computing Univ Estadual Paulista
dc.description.affiliationUnespDepartment of Computing UNESP Univ. Estadual Paulista
dc.format.extent77-85
dc.identifierhttp://dx.doi.org/10.4156/jnit.vol1.issue1.7
dc.identifier.citationJournal of Next Generation Information Technology, v. 1, n. 1, p. 77-85, 2010.
dc.identifier.doi10.4156/jnit.vol1.issue1.7
dc.identifier.issn2092-8637
dc.identifier.issn2233-9388
dc.identifier.lattes6027713750942689
dc.identifier.lattes9039182932747194
dc.identifier.scopus2-s2.0-84871260696
dc.identifier.urihttp://hdl.handle.net/11449/72106
dc.language.isoeng
dc.relation.ispartofJournal of Next Generation Information Technology
dc.relation.ispartofsjr0,125
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectArtificial intelligence
dc.subjectOptimum-path forest
dc.subjectPetroleum well drilling
dc.titleFast petroleum well drilling monitoring through optimum-path foresten
dc.typeArtigo
dcterms.licensehttp://www.aicit.org/jnit/global/ethics.html?jname=JNIT
dspace.entity.typePublication
unesp.author.lattes6027713750942689[2]
unesp.author.lattes9039182932747194
unesp.author.orcid0000-0003-4861-7061[2]
unesp.author.orcid0000-0002-6494-7514[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos