Design of a silicon Mach–Zehnder modulator via deep learning and evolutionary algorithms
| dc.contributor.author | Aparecido de Paula, Romulo [UNESP] | |
| dc.contributor.author | Aldaya, Ivan [UNESP] | |
| dc.contributor.author | Sutili, Tiago | |
| dc.contributor.author | Figueiredo, Rafael C. | |
| dc.contributor.author | Pita, Julian L. | |
| dc.contributor.author | Bustamante, Yesica R. R. | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Centre for Research and Development in Telecommunications (CPQD) | |
| dc.contributor.institution | École de Technologie Supérieure (ÉTS) | |
| dc.contributor.institution | University College London (UCL) | |
| dc.contributor.institution | Infinera Unipessoal Lda | |
| dc.date.accessioned | 2025-04-29T20:12:50Z | |
| dc.date.issued | 2023-12-01 | |
| dc.description.abstract | As an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a 40GHz bandwidth and a driving voltage of 6.25V , or, alternatively, 47.5GHz with a driving voltage of 8V . Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs. | en |
| dc.description.affiliation | Center for Advanced and Sustainable Technologies State University of Sao Paulo (UNESP), SP | |
| dc.description.affiliation | Centre for Research and Development in Telecommunications (CPQD), SP | |
| dc.description.affiliation | Department of Electrical Engineering École de Technologie Supérieure (ÉTS) | |
| dc.description.affiliation | Department of Electronic and Electrical Engineering University College London (UCL), Gower St | |
| dc.description.affiliation | Infinera Unipessoal Lda | |
| dc.description.affiliationUnesp | Center for Advanced and Sustainable Technologies State University of Sao Paulo (UNESP), SP | |
| dc.description.sponsorship | Instituto Nacional de Pesquisas Espaciais, Ministério da Ciência, Tecnologia, Inovações e Comunicações | |
| dc.description.sponsorship | Ministério da Ciência, Tecnologia, Inovações e Comunicações | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | Instituto Nacional de Pesquisas Espaciais, Ministério da Ciência, Tecnologia, Inovações e Comunicações: 01.19.0088.00 | |
| dc.description.sponsorshipId | Ministério da Ciência, Tecnologia, Inovações e Comunicações: 01.19.0088.00 | |
| dc.description.sponsorshipId | FAPESP: 2015/24517-8 | |
| dc.description.sponsorshipId | CNPq: 305104/2021-7 | |
| dc.description.sponsorshipId | CNPq: 311035/2018-3 | |
| dc.description.sponsorshipId | CNPq: 432303/2018-9 | |
| dc.identifier | http://dx.doi.org/10.1038/s41598-023-41558-8 | |
| dc.identifier.citation | Scientific Reports, v. 13, n. 1, 2023. | |
| dc.identifier.doi | 10.1038/s41598-023-41558-8 | |
| dc.identifier.issn | 2045-2322 | |
| dc.identifier.scopus | 2-s2.0-85169761501 | |
| dc.identifier.uri | https://hdl.handle.net/11449/308522 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Scientific Reports | |
| dc.source | Scopus | |
| dc.title | Design of a silicon Mach–Zehnder modulator via deep learning and evolutionary algorithms | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication |

