Logo do repositório

Design of a silicon Mach–Zehnder modulator via deep learning and evolutionary algorithms

dc.contributor.authorAparecido de Paula, Romulo [UNESP]
dc.contributor.authorAldaya, Ivan [UNESP]
dc.contributor.authorSutili, Tiago
dc.contributor.authorFigueiredo, Rafael C.
dc.contributor.authorPita, Julian L.
dc.contributor.authorBustamante, Yesica R. R.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionCentre for Research and Development in Telecommunications (CPQD)
dc.contributor.institutionÉcole de Technologie Supérieure (ÉTS)
dc.contributor.institutionUniversity College London (UCL)
dc.contributor.institutionInfinera Unipessoal Lda
dc.date.accessioned2025-04-29T20:12:50Z
dc.date.issued2023-12-01
dc.description.abstractAs an essential block in optical communication systems, silicon (Si) Mach–Zehnder modulators (MZMs) are approaching the limits of possible performance for high-speed applications. However, due to a large number of design parameters and the complex simulation of these devices, achieving high-performance configuration employing conventional optimization methods result in prohibitively long times and use of resources. Here, we propose a design methodology based on artificial neural networks and heuristic optimization that significantly reduces the complexity of the optimization process. First, we implemented a deep neural network model to substitute the 3D electromagnetic simulation of a Si-based MZM, whereas subsequently, this model is used to estimate the figure of merit within the heuristic optimizer, which, in our case, is the differential evolution algorithm. By applying this method to CMOS-compatible MZMs, we find new optimized configurations in terms of electro-optical bandwidth, insertion loss, and half-wave voltage. In particular, we achieve configurations of MZMs with a 40GHz bandwidth and a driving voltage of 6.25V , or, alternatively, 47.5GHz with a driving voltage of 8V . Furthermore, the faster simulation allowed optimizing MZM subject to different constraints, which permits us to explore the possible performance boundary of this type of MZMs.en
dc.description.affiliationCenter for Advanced and Sustainable Technologies State University of Sao Paulo (UNESP), SP
dc.description.affiliationCentre for Research and Development in Telecommunications (CPQD), SP
dc.description.affiliationDepartment of Electrical Engineering École de Technologie Supérieure (ÉTS)
dc.description.affiliationDepartment of Electronic and Electrical Engineering University College London (UCL), Gower St
dc.description.affiliationInfinera Unipessoal Lda
dc.description.affiliationUnespCenter for Advanced and Sustainable Technologies State University of Sao Paulo (UNESP), SP
dc.description.sponsorshipInstituto Nacional de Pesquisas Espaciais, Ministério da Ciência, Tecnologia, Inovações e Comunicações
dc.description.sponsorshipMinistério da Ciência, Tecnologia, Inovações e Comunicações
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdInstituto Nacional de Pesquisas Espaciais, Ministério da Ciência, Tecnologia, Inovações e Comunicações: 01.19.0088.00
dc.description.sponsorshipIdMinistério da Ciência, Tecnologia, Inovações e Comunicações: 01.19.0088.00
dc.description.sponsorshipIdFAPESP: 2015/24517-8
dc.description.sponsorshipIdCNPq: 305104/2021-7
dc.description.sponsorshipIdCNPq: 311035/2018-3
dc.description.sponsorshipIdCNPq: 432303/2018-9
dc.identifierhttp://dx.doi.org/10.1038/s41598-023-41558-8
dc.identifier.citationScientific Reports, v. 13, n. 1, 2023.
dc.identifier.doi10.1038/s41598-023-41558-8
dc.identifier.issn2045-2322
dc.identifier.scopus2-s2.0-85169761501
dc.identifier.urihttps://hdl.handle.net/11449/308522
dc.language.isoeng
dc.relation.ispartofScientific Reports
dc.sourceScopus
dc.titleDesign of a silicon Mach–Zehnder modulator via deep learning and evolutionary algorithmsen
dc.typeArtigopt
dspace.entity.typePublication

Arquivos

Coleções