Logotipo do repositório
 

Publicação:
Monotone FISTA With Variable Acceleration for Compressed Sensing Magnetic Resonance Imaging

dc.contributor.authorZibetti, Marcelo Victor Wust
dc.contributor.authorHelou, Elias Salomao [UNESP]
dc.contributor.authorRegatte, Ravinder R.
dc.contributor.authorHerman, Gabor T.
dc.contributor.institutionNew York Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCUNY
dc.date.accessioned2019-10-04T11:56:54Z
dc.date.available2019-10-04T11:56:54Z
dc.date.issued2019-03-01
dc.description.abstractAn improvement of the monotone fast iterative shrinkage-thresholding algorithm (MFISTA) for faster convergence is proposed in this paper. Our motivation is to reduce the reconstruction time of compressed sensing problems in magnetic resonance imaging. The proposed modification introduces an extra term, which is a multiple of the proximal-gradient step, into the so-called momentum formula used for the computation of the next iterate in MFISTA. In addition, the modified algorithm selects the next iterate as a possibly improved point obtained by any other procedure, such as an arbitrary shift, a line search, or other methods. As an example, an arbitrary-length shift in the direction from the previous iterate to the output of the proximal-gradient step is considered. The resulting algorithm accelerates MFISTA in a manner that varies with the iterative steps. Convergence analysis shows that the proposed modification provides improved theoretical convergence bounds, and that it has more flexibility in its parameters than the original MFISTA. Since such problems need to he studied in the context of functions of several complex variables, a careful extension of FISTA-like methods to complex variables is provided.en
dc.description.affiliationNew York Univ, Sch Med, New York, NY 10016 USA
dc.description.affiliationState Univ Sao Paulo, BR-01049010 Sao Paulo, Brazil
dc.description.affiliationCUNY, New York, NY 10017 USA
dc.description.affiliationUnespState Univ Sao Paulo, BR-01049010 Sao Paulo, Brazil
dc.description.sponsorshipNIH
dc.description.sponsorshipCenter of Advanced Imaging Innovation and Research (CAI2R)
dc.description.sponsorshipNIBIB Biomedical Technology Resource Center
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdNIH: R01-AR060238
dc.description.sponsorshipIdNIH: R01-AR067156
dc.description.sponsorshipIdNIH: R01-AR068966
dc.description.sponsorshipIdNIBIB Biomedical Technology Resource Center: NIH P41-EB017183
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2016/24286-9
dc.format.extent109-119
dc.identifierhttp://dx.doi.org/10.1109/TCI.2018.2882681
dc.identifier.citationIeee Transactions On Computational Imaging. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 5, n. 1, p. 109-119, 2019.
dc.identifier.doi10.1109/TCI.2018.2882681
dc.identifier.issn2333-9403
dc.identifier.urihttp://hdl.handle.net/11449/184355
dc.identifier.wosWOS:000458778600009
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Transactions On Computational Imaging
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectProximal-gradient methods
dc.subjectFISTA
dc.subjectcompressed sensing
dc.subjectmagnetic resonance imaging
dc.subjectiterative algorithms
dc.titleMonotone FISTA With Variable Acceleration for Compressed Sensing Magnetic Resonance Imagingen
dc.typeArtigo
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
unesp.author.orcid0000-0003-2856-3625[1]

Arquivos

Coleções