Optimized continuous dynamical decoupling via differential geometry and machine learning
| dc.contributor.author | Morazotti, Nicolas André Da Costa | |
| dc.contributor.author | Da Silva, Adonai Hilário | |
| dc.contributor.author | Audi, Gabriel | |
| dc.contributor.author | Fanchini, Felipe Fernandes [UNESP] | |
| dc.contributor.author | Napolitano, Reginaldo De Jesus | |
| dc.contributor.institution | Universidade de São Paulo (USP) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | QuaTI-Quantum Technology & Information | |
| dc.date.accessioned | 2025-04-29T18:42:30Z | |
| dc.date.issued | 2024-10-01 | |
| dc.description.abstract | We introduce a strategy to develop optimally designed fields for continuous dynamical decoupling. Using our methodology, we obtain the optimal continuous field configuration to maximize the fidelity of a general one-qubit quantum gate. To achieve this, considering dephasing-noise perturbations, we employ an auxiliary qubit instead of the boson bath to implement a purification scheme, which results in unitary dynamics. Employing the sub-Riemannian geometry framework for the two-qubit unitary group, we derive and numerically solve the geodesic equations, obtaining the optimal time-dependent control Hamiltonian. Also, due to the extended time required to find solutions to the geodesic equations, we train a neural network on a subset of geodesic solutions, enabling us to promptly generate the time-dependent control Hamiltonian for any desired gate, which is crucial in circuit optimization. | en |
| dc.description.affiliation | Sao Carlos Institute of Physics University of Sao Paulo, P.O. Box 369, SP | |
| dc.description.affiliation | Sao Paulo State University (UNESP) School of Sciences, SP | |
| dc.description.affiliation | QuaTI-Quantum Technology & Information, SP | |
| dc.description.affiliationUnesp | Sao Paulo State University (UNESP) School of Sciences, SP | |
| dc.identifier | http://dx.doi.org/10.1103/PhysRevA.110.042601 | |
| dc.identifier.citation | Physical Review A, v. 110, n. 4, 2024. | |
| dc.identifier.doi | 10.1103/PhysRevA.110.042601 | |
| dc.identifier.issn | 2469-9934 | |
| dc.identifier.issn | 2469-9926 | |
| dc.identifier.scopus | 2-s2.0-85205812399 | |
| dc.identifier.uri | https://hdl.handle.net/11449/299454 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Physical Review A | |
| dc.source | Scopus | |
| dc.title | Optimized continuous dynamical decoupling via differential geometry and machine learning | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
| unesp.author.orcid | 0000-0002-7806-3445[1] | |
| unesp.author.orcid | 0000-0002-6613-1690[2] | |
| unesp.author.orcid | 0009-0001-0229-4028[3] | |
| unesp.author.orcid | 0000-0003-3297-905X 0000-0003-3297-905X[4] | |
| unesp.author.orcid | 0000-0001-8745-5785[5] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
