Atenção!


Informamos que o Repositório Institucional passará por atualização no dia 15/01/2026 e ficará fora do ar entre 10:00 e 14:00 horas.

Pedimos a sua compreensão

Logo do repositório

Optimized continuous dynamical decoupling via differential geometry and machine learning

dc.contributor.authorMorazotti, Nicolas André Da Costa
dc.contributor.authorDa Silva, Adonai Hilário
dc.contributor.authorAudi, Gabriel
dc.contributor.authorFanchini, Felipe Fernandes [UNESP]
dc.contributor.authorNapolitano, Reginaldo De Jesus
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionQuaTI-Quantum Technology & Information
dc.date.accessioned2025-04-29T18:42:30Z
dc.date.issued2024-10-01
dc.description.abstractWe introduce a strategy to develop optimally designed fields for continuous dynamical decoupling. Using our methodology, we obtain the optimal continuous field configuration to maximize the fidelity of a general one-qubit quantum gate. To achieve this, considering dephasing-noise perturbations, we employ an auxiliary qubit instead of the boson bath to implement a purification scheme, which results in unitary dynamics. Employing the sub-Riemannian geometry framework for the two-qubit unitary group, we derive and numerically solve the geodesic equations, obtaining the optimal time-dependent control Hamiltonian. Also, due to the extended time required to find solutions to the geodesic equations, we train a neural network on a subset of geodesic solutions, enabling us to promptly generate the time-dependent control Hamiltonian for any desired gate, which is crucial in circuit optimization.en
dc.description.affiliationSao Carlos Institute of Physics University of Sao Paulo, P.O. Box 369, SP
dc.description.affiliationSao Paulo State University (UNESP) School of Sciences, SP
dc.description.affiliationQuaTI-Quantum Technology & Information, SP
dc.description.affiliationUnespSao Paulo State University (UNESP) School of Sciences, SP
dc.identifierhttp://dx.doi.org/10.1103/PhysRevA.110.042601
dc.identifier.citationPhysical Review A, v. 110, n. 4, 2024.
dc.identifier.doi10.1103/PhysRevA.110.042601
dc.identifier.issn2469-9934
dc.identifier.issn2469-9926
dc.identifier.scopus2-s2.0-85205812399
dc.identifier.urihttps://hdl.handle.net/11449/299454
dc.language.isoeng
dc.relation.ispartofPhysical Review A
dc.sourceScopus
dc.titleOptimized continuous dynamical decoupling via differential geometry and machine learningen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.orcid0000-0002-7806-3445[1]
unesp.author.orcid0000-0002-6613-1690[2]
unesp.author.orcid0009-0001-0229-4028[3]
unesp.author.orcid0000-0003-3297-905X 0000-0003-3297-905X[4]
unesp.author.orcid0000-0001-8745-5785[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt

Arquivos