Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Automated recognition of pain in cats

dc.contributor.authorFeighelstein, Marcelo
dc.contributor.authorShimshoni, Ilan
dc.contributor.authorFinka, Lauren R.
dc.contributor.authorLuna, Stelio P. L. [UNESP]
dc.contributor.authorMills, Daniel S.
dc.contributor.authorZamansky, Anna
dc.contributor.institutionUniversity of Haifa
dc.contributor.institutionThe University of Nottingham
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Lincoln
dc.date.accessioned2023-03-01T20:49:20Z
dc.date.available2023-03-01T20:49:20Z
dc.date.issued2022-12-01
dc.description.abstractFacial expressions in non-human animals are closely linked to their internal affective states, with the majority of empirical work focusing on facial shape changes associated with pain. However, existing tools for facial expression analysis are prone to human subjectivity and bias, and in many cases also require special expertise and training. This paper presents the first comparative study of two different paths towards automatizing pain recognition in facial images of domestic short haired cats (n = 29), captured during ovariohysterectomy at different time points corresponding to varying intensities of pain. One approach is based on convolutional neural networks (ResNet50), while the other—on machine learning models based on geometric landmarks analysis inspired by species specific Facial Action Coding Systems (i.e. catFACS). Both types of approaches reach comparable accuracy of above 72%, indicating their potential usefulness as a basis for automating cat pain detection from images.en
dc.description.affiliationInformation Systems Department University of Haifa
dc.description.affiliationSchool of Veterinary Medicine and Science The University of Nottingham
dc.description.affiliationDepartment of Veterinary Surgery and Animal Reproduction School of Veterinary Medicine and Animal Science São Paulo State University (Unesp), São Paulo
dc.description.affiliationSchool of Life Sciences Joseph Bank Laboratories University of Lincoln
dc.description.affiliationUnespDepartment of Veterinary Surgery and Animal Reproduction School of Veterinary Medicine and Animal Science São Paulo State University (Unesp), São Paulo
dc.identifierhttp://dx.doi.org/10.1038/s41598-022-13348-1
dc.identifier.citationScientific Reports, v. 12, n. 1, 2022.
dc.identifier.doi10.1038/s41598-022-13348-1
dc.identifier.issn2045-2322
dc.identifier.scopus2-s2.0-85131806845
dc.identifier.urihttp://hdl.handle.net/11449/241151
dc.language.isoeng
dc.relation.ispartofScientific Reports
dc.sourceScopus
dc.titleAutomated recognition of pain in catsen
dc.typeArtigo
dspace.entity.typePublication
relation.isOrgUnitOfPublication9ca5a87b-0c83-43fa-b290-6f8a4202bf99
relation.isOrgUnitOfPublication.latestForDiscovery9ca5a87b-0c83-43fa-b290-6f8a4202bf99
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária e Zootecnia, Botucatupt
unesp.departmentReprodução Animal e Radiologia Veterinária - FMVZpt

Arquivos