Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Development and validation of a simple machine learning tool to predict mortality in leptospirosis

dc.contributor.authorGaldino, Gabriela Studart
dc.contributor.authorde Sandes-Freitas, Tainá Veras
dc.contributor.authorde Andrade, Luis Gustavo Modelli [UNESP]
dc.contributor.authorAdamian, Caio Manuel Caetano
dc.contributor.authorMeneses, Gdayllon Cavalcante
dc.contributor.authorda Silva Junior, Geraldo Bezerra
dc.contributor.authorde Francesco Daher, Elizabeth
dc.contributor.institutionFederal University of Ceará
dc.contributor.institutionHospital Geral de Fortaleza
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversity of Fortaleza
dc.date.accessioned2023-07-29T12:57:09Z
dc.date.available2023-07-29T12:57:09Z
dc.date.issued2023-12-01
dc.description.abstractPredicting risk factors for death in leptospirosis is challenging, and identifying high-risk patients is crucial as it might expedite the start of life-saving supportive care. Admission data of 295 leptospirosis patients were enrolled, and a machine-learning approach was used to fit models in a derivation cohort. The comparison of accuracy metrics was performed with two previous models—SPIRO score and quick SOFA score. A Lasso regression analysis was the selected model, demonstrating the best accuracy to predict mortality in leptospirosis [area under the curve (AUC-ROC) = 0.776]. A score-based prediction was carried out with the coefficients of this model and named LeptoScore. Then, to simplify the predictive tool, a new score was built by attributing points to the predictors with importance values higher than 1. The simplified score, named QuickLepto, has five variables (age > 40 years; lethargy; pulmonary symptom; mean arterial pressure < 80 mmHg and hematocrit < 30%) and good predictive accuracy (AUC-ROC = 0.788). LeptoScore and QuickLepto had better accuracy to predict mortality in patients with leptospirosis when compared to SPIRO score (AUC-ROC = 0.500) and quick SOFA score (AUC-ROC = 0.782). The main result is a new scoring system, the QuickLepto, that is a simple and useful tool to predict death in leptospirosis patients at hospital admission.en
dc.description.affiliationMedical Sciences Postgraduate Program Federal University of Ceará, Rua Silva Jatahy 1000 ap 600, Ceará
dc.description.affiliationHospital Universitário Walter Cantídio Federal University of Ceará, Ceará
dc.description.affiliationHospital Geral de Fortaleza, Ceara
dc.description.affiliationBotucatu Medical School Universidade Estadual Paulista, São Paulo
dc.description.affiliationSchool of Medicine Medical Sciences and Public Health Postgraduate Programs University of Fortaleza, Ceará
dc.description.affiliationUnespBotucatu Medical School Universidade Estadual Paulista, São Paulo
dc.identifierhttp://dx.doi.org/10.1038/s41598-023-31707-4
dc.identifier.citationScientific Reports, v. 13, n. 1, 2023.
dc.identifier.doi10.1038/s41598-023-31707-4
dc.identifier.issn2045-2322
dc.identifier.scopus2-s2.0-85150665881
dc.identifier.urihttp://hdl.handle.net/11449/247031
dc.language.isoeng
dc.relation.ispartofScientific Reports
dc.sourceScopus
dc.titleDevelopment and validation of a simple machine learning tool to predict mortality in leptospirosisen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa3cdb24b-db92-40d9-b3af-2eacecf9f2ba
relation.isOrgUnitOfPublication.latestForDiscoverya3cdb24b-db92-40d9-b3af-2eacecf9f2ba
unesp.author.orcid0000-0003-2760-3162[1]
unesp.author.orcid0000-0002-4435-0614[2]
unesp.author.orcid0000-0002-0230-0766[3]
unesp.author.orcid0000-0003-1017-4728[4]
unesp.author.orcid0000-0002-0160-5728[5]
unesp.author.orcid0000-0002-8971-0994[6]
unesp.author.orcid0000-0003-4189-1738[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatupt

Arquivos