Degenerate Kirchhoff problems with nonlinear Neumann boundary condition
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
In this paper we consider degenerate Kirchhoff-type equations of the form −ϕ(Ξ(u))(A(u)−|u|p−2u)=f(x,u)in Ω,ϕ(Ξ(u))B(u)⋅ν=g(x,u)on ∂Ω, where Ω⊆RN, N≥2, is a bounded domain with Lipschitz boundary ∂Ω, A denotes the double phase operator given by A(u)=div(|∇u|p−2∇u+μ(x)|∇u|q−2∇u) for u∈W1,H(Ω), ν(x) is the outer unit normal of Ω at x∈∂Ω, [Formula presented], 0≤μ(⋅)∈L∞(Ω), ϕ(s)=a+bsζ−1 for s∈R with a≥0, b>0 and ζ≥1, and f:Ω×R→R, g:∂Ω×R→R are Carathéodory functions that grow superlinearly and subcritically. We prove the existence of a nodal ground state solution to the problem above, based on variational methods and minimization of the associated energy functional E:W1,H(Ω)→R over the constraint set C={u∈W1,H(Ω):u±≠0,〈E′(u),u+〉=〈E′(u),−u−〉=0}, whereby C differs from the well-known nodal Nehari manifold due to the nonlocal character of the problem.
Descrição
Palavras-chave
Constraint set, Degenerate Kirchhoff problem, Least energy sign-changing solution, Nodal ground state solution
Idioma
Inglês
Citação
Journal of Functional Analysis, v. 289, n. 4, 2025.




