Logotipo do repositório
 

Publicação:
A genetic algorithm/mathematical programming approach to solve a two-level soft drink production problem

dc.contributor.authorMotta Toledo, Claudio Fabiano
dc.contributor.authorOliveira, Lucas de
dc.contributor.authorPereira, Rodrigo de Freitas
dc.contributor.authorFranca, Paulo Morelato [UNESP]
dc.contributor.authorMorabito, Reinaldo
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2014-12-03T13:11:40Z
dc.date.available2014-12-03T13:11:40Z
dc.date.issued2014-08-01
dc.description.abstractThis study applies a genetic algorithm embedded with mathematical programming techniques to solve a synchronized and integrated two-level lot sizing and scheduling problem motivated by a real-world problem that arises in soft drink production. The problem considers a production process compounded by raw material preparation/storage and soft drink bottling. The lot sizing and scheduling decisions should be made simultaneously for raw material preparation/storage in tanks and soft drink bottling in several production lines minimizing inventory, shortage and setup costs. The literature provides mixed-integer programming models for this problem, as well as solution methods based on evolutionary algorithms and relax-and-fix approaches. The method applied by this paper uses a new approach which combines a genetic algorithm (GA) with mathematical programming techniques. The GA deals with sequencing decisions for production lots, so that an exact method can solve a simplified linear programming model, responsible for lot sizing decisions. The computational results show that this evolutionary/mathematical programming approach outperforms the literature methods in terms of production costs and run times when applied to a set of real-world problem instances provided by a soft drink company. (C) 2014 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUniv Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP, Brazil
dc.description.affiliationState Univ Sao Paulo, Dept Math & Comp Sci, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Prod Engn, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationUnespState Univ Sao Paulo, Dept Math & Comp Sci, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 483474/2013-4
dc.description.sponsorshipIdFAPESP: 10/10133-0
dc.format.extent40-52
dc.identifierhttp://dx.doi.org/10.1016/j.cor.2014.02.012
dc.identifier.citationComputers & Operations Research. Oxford: Pergamon-elsevier Science Ltd, v. 48, p. 40-52, 2014.
dc.identifier.doi10.1016/j.cor.2014.02.012
dc.identifier.issn0305-0548
dc.identifier.urihttp://hdl.handle.net/11449/113404
dc.identifier.wosWOS:000336471900005
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofComputers & Operations Research
dc.relation.ispartofjcr2.962
dc.relation.ispartofsjr1,916
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectGenetic algorithmsen
dc.subjectMathematical programmingen
dc.subjectMathheuristicsen
dc.subjectSoft drink industryen
dc.subjectProduction planningen
dc.subjectLot sizing and schedulingen
dc.titleA genetic algorithm/mathematical programming approach to solve a two-level soft drink production problemen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0002-0490-5515[4]
unesp.author.orcid0000-0002-3948-305X[5]
unesp.author.orcid0000-0003-4776-8052[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept
unesp.departmentMatemática e Computação - FCTpt

Arquivos