Logo do repositório

An investigation of the survival probability for chaotic diffusion in a family of discrete Hamiltonian mappings

dc.contributor.authorBorin, Daniel [UNESP]
dc.contributor.authorLivorati, André Luís Prando [UNESP]
dc.contributor.authorLeonel, Edson Denis [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionInstituto de Ciências Exatas e Tecnologia
dc.date.accessioned2025-04-29T20:05:53Z
dc.date.issued2023-10-01
dc.description.abstractDiffusive processes usually model the transport of particles in nonlinear systems. Complete chaos leads to normal diffusion, while mixed phase space gives rise to a phenomenon called stickiness, leading to anomalous diffusion. We investigate the survival probability that a particle moving along a chaotic region in a mixed-phase space has to survive a specific domain. We show along the chaotic part far from islands that an exponential decay describes the survival probability. Nonetheless, when the islands are incorporated into the domain, the survival probability exhibits an exponential decay for a short time, changing to a slower decay for a considerable enough time. This changeover is a signature of stickiness. We solve the diffusion equation by obtaining the probability density to observe a given particle along a specific region within a certain time interval. Integrating the probability density for a defined phase space area provides analytical survival probability. Numerical simulations fit well the analytical findings for the survival probability when the region is fully chaotic. However, the agreement could be better when mixed structure with islands and periodic areas are included in the domain.en
dc.description.affiliationDepartamento de Física Univ. Estadual Paulista - Unesp, Av.24A, 1515, Bela Vista, SP
dc.description.affiliationDepartamento de Matemática Univ. Estadual Paulista - Unesp, Av.24A, 1515, Bela Vista, SP
dc.description.affiliationUniversidade Paulista (UNIP) Instituto de Ciências Exatas e Tecnologia, Rua Miguel Guidoti, 405, Parque Egisto Ragazzo, SP
dc.description.affiliationUnespDepartamento de Física Univ. Estadual Paulista - Unesp, Av.24A, 1515, Bela Vista, SP
dc.description.affiliationUnespDepartamento de Matemática Univ. Estadual Paulista - Unesp, Av.24A, 1515, Bela Vista, SP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2021/09519-5
dc.description.sponsorshipIdFAPESP: 2022/03612-6
dc.description.sponsorshipIdCNPq: 301318/2019-0
dc.identifierhttp://dx.doi.org/10.1016/j.chaos.2023.113965
dc.identifier.citationChaos, Solitons and Fractals, v. 175.
dc.identifier.doi10.1016/j.chaos.2023.113965
dc.identifier.issn0960-0779
dc.identifier.scopus2-s2.0-85169579660
dc.identifier.urihttps://hdl.handle.net/11449/306314
dc.language.isoeng
dc.relation.ispartofChaos, Solitons and Fractals
dc.sourceScopus
dc.subjectChaotic diffusion
dc.subjectStickiness effect
dc.subjectSurvival probability
dc.titleAn investigation of the survival probability for chaotic diffusion in a family of discrete Hamiltonian mappingsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-4098-7730 0000-0002-4098-7730[1]

Arquivos

Coleções