Logotipo do repositório
 

Publicação:
Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map

dc.contributor.authorHermes, Joelson D.V.
dc.contributor.authorGraciano, Flávio Heleno
dc.contributor.authorLeonel, Edson D. [UNESP]
dc.contributor.institutionPraça Tiradentes
dc.contributor.institutionInstituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T01:14:59Z
dc.date.available2020-12-12T01:14:59Z
dc.date.issued2020-01-01
dc.description.abstractThe scaling formalism is applied to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation in the logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function leading to a set of critical exponents. Near the bifurcation the convergence is rather exponential whose relaxation time is given by a power law. We use two different approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) an approximation that transforms the recurrence equations in a differential equation which is solved under appropriate conditions given analytically the scaling exponents. The numerical results give support for the theoretical approach.en
dc.description.affiliationInstituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais Praça Tiradentes
dc.description.affiliationInstituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais, Avenida Maria da Conceiç ão Santos
dc.description.affiliationDepartamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela Vista
dc.description.affiliationUnespDepartamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela Vista
dc.format.extent63-70
dc.identifierhttp://dx.doi.org/10.5890/DNC.2020.03.005
dc.identifier.citationDiscontinuity, Nonlinearity, and Complexity, v. 9, n. 1, p. 63-70, 2020.
dc.identifier.doi10.5890/DNC.2020.03.005
dc.identifier.issn2164-6414
dc.identifier.issn2164-6376
dc.identifier.scopus2-s2.0-85079386572
dc.identifier.urihttp://hdl.handle.net/11449/198514
dc.language.isoeng
dc.relation.ispartofDiscontinuity, Nonlinearity, and Complexity
dc.sourceScopus
dc.subjectCritical exponents
dc.subjectLogistic map
dc.subjectTangent bifurcation
dc.titleUniversal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic mapen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções