Publicação: Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map
dc.contributor.author | Hermes, Joelson D.V. | |
dc.contributor.author | Graciano, Flávio Heleno | |
dc.contributor.author | Leonel, Edson D. [UNESP] | |
dc.contributor.institution | Praça Tiradentes | |
dc.contributor.institution | Instituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-12T01:14:59Z | |
dc.date.available | 2020-12-12T01:14:59Z | |
dc.date.issued | 2020-01-01 | |
dc.description.abstract | The scaling formalism is applied to understand and describe the evolution towards the equilibrium at and near at a tangent bifurcation in the logistic map. At the bifurcation the convergence to the steady state is described by a homogeneous function leading to a set of critical exponents. Near the bifurcation the convergence is rather exponential whose relaxation time is given by a power law. We use two different approaches to obtain the critical exponents: (1) a phenomenological investigation based on three scaling hypotheses leading to a scaling law relating three critical exponents and; (2) an approximation that transforms the recurrence equations in a differential equation which is solved under appropriate conditions given analytically the scaling exponents. The numerical results give support for the theoretical approach. | en |
dc.description.affiliation | Instituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais Praça Tiradentes | |
dc.description.affiliation | Instituto Federal de Educaç ão Ciência e Tecnologia do Sul de Minas Gerais, Avenida Maria da Conceiç ão Santos | |
dc.description.affiliation | Departamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela Vista | |
dc.description.affiliationUnesp | Departamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela Vista | |
dc.format.extent | 63-70 | |
dc.identifier | http://dx.doi.org/10.5890/DNC.2020.03.005 | |
dc.identifier.citation | Discontinuity, Nonlinearity, and Complexity, v. 9, n. 1, p. 63-70, 2020. | |
dc.identifier.doi | 10.5890/DNC.2020.03.005 | |
dc.identifier.issn | 2164-6414 | |
dc.identifier.issn | 2164-6376 | |
dc.identifier.scopus | 2-s2.0-85079386572 | |
dc.identifier.uri | http://hdl.handle.net/11449/198514 | |
dc.language.iso | eng | |
dc.relation.ispartof | Discontinuity, Nonlinearity, and Complexity | |
dc.source | Scopus | |
dc.subject | Critical exponents | |
dc.subject | Logistic map | |
dc.subject | Tangent bifurcation | |
dc.title | Universal behavior of the convergence to the stationary state for a tangent bifurcation in the logistic map | en |
dc.type | Artigo | |
dspace.entity.type | Publication |