Logotipo do repositório
 

Publicação:
Comparative study between powers of sigmoid functions, MLP-backpropagation and polynomials in function approximation problems

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Spie - Int Soc Optical Engineering

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.

Descrição

Palavras-chave

Approximation theory, Backpropagation, Function evaluation, Polynomials, Function approximation, Polynomials powers of sigmoid (PPS), Multilayer neural networks

Idioma

Inglês

Como citar

Signal Processing, Sensor Fusion, and Target Recognition Viii. Bellingham: Spie-int Soc Optical Engineering, v. 3720, p. 451-458, 1999.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação