Publicação: Comparative study between powers of sigmoid functions, MLP-backpropagation and polynomials in function approximation problems
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Spie - Int Soc Optical Engineering
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
Function approximation is a very important task in environments where the computation has to be based on extracting information from data samples in real world processes. So, the development of new mathematical model is a very important activity to guarantee the evolution of the function approximation area. In this sense, we will present the Polynomials Powers of Sigmoid (PPS) as a linear neural network. In this paper, we will introduce one series of practical results for the Polynomials Powers of Sigmoid, where we will show some advantages of the use of the powers of sigmiod functions in relationship the traditional MLP-Backpropagation and Polynomials in functions approximation problems.
Descrição
Palavras-chave
Approximation theory, Backpropagation, Function evaluation, Polynomials, Function approximation, Polynomials powers of sigmoid (PPS), Multilayer neural networks
Idioma
Inglês
Como citar
Signal Processing, Sensor Fusion, and Target Recognition Viii. Bellingham: Spie-int Soc Optical Engineering, v. 3720, p. 451-458, 1999.