Logotipo do repositório
 

Publicação:
Combining machine learning and texture analysis to differentiate mediastinal lymph nodes in lung cancer patients

dc.contributor.authorAlves, Allan F. F. [UNESP]
dc.contributor.authorSouza, Sergio A. [UNESP]
dc.contributor.authorRuiz, Raul L. [UNESP]
dc.contributor.authorReis, Tarcisio A. [UNESP]
dc.contributor.authorXimenes, Aglaia M. G. [UNESP]
dc.contributor.authorHasimoto, Erica N. [UNESP]
dc.contributor.authorPires, Rodrigo L. [UNESP]
dc.contributor.authorMiranda, Jose Ricardo A. [UNESP]
dc.contributor.authorPina, Diana R. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:54:44Z
dc.date.available2021-06-25T11:54:44Z
dc.date.issued2021-03-17
dc.description.abstractEvaluate whether texture analysis associated with machine learning approaches could differentiate between malignant and benign lymph nodes. A total 18 patients with lung cancer were selected, with 39 lymph nodes, being 15 malignant and 24 benign. Retrospective computed tomography scans were utilized both with and without contrast medium. The great differential of this work was the use of 15 textures from mediastinal lymph nodes, with five different physicians as operators. First and second order statistical textures such as gray level run length and co-occurrence matrix were extracted and applied to three different machine learning classifiers. The best machine learning classifier demonstrated a variability of less than 5% among operators. The support vector machine (SVM) classifier presented 95% of the area under the ROC curve (AUC) and 89% of sensitivity for sequences without contrast medium. SVM classifier presented 93% of AUC and 86% of sensitivity for sequences with contrast medium. Texture analysis and machine learning may be helpful in the differentiation between malign and benign lymph nodes. This study can aid the physician in diagnosis and staging of lymph nodes and potentially reduce the number of invasive analysis to histopathological confirmation.en
dc.description.affiliationSao Paulo State Univ Julio de Mesquita Filho, Med Sch, Aracatuba, Brazil
dc.description.affiliationSao Paulo State Univ Julio de Mesquita Filho, Inst Biosci, Aracatuba, Brazil
dc.description.affiliationUnespSao Paulo State Univ Julio de Mesquita Filho, Med Sch, Aracatuba, Brazil
dc.description.affiliationUnespSao Paulo State Univ Julio de Mesquita Filho, Inst Biosci, Aracatuba, Brazil
dc.format.extent8
dc.identifierhttp://dx.doi.org/10.1007/s13246-021-00988-2
dc.identifier.citationPhysical And Engineering Sciences In Medicine. Dordrecht: Springer, 8 p., 2021.
dc.identifier.doi10.1007/s13246-021-00988-2
dc.identifier.issn2662-4729
dc.identifier.urihttp://hdl.handle.net/11449/209270
dc.identifier.wosWOS:000629908800001
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofPhysical And Engineering Sciences In Medicine
dc.sourceWeb of Science
dc.subjectLymph nodes
dc.subjectTextures
dc.subjectMachine learning
dc.subjectImage
dc.titleCombining machine learning and texture analysis to differentiate mediastinal lymph nodes in lung cancer patientsen
dc.typeArtigopt
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina, Botucatupt

Arquivos