Publicação: Feature selection through gravitational search algorithm
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
IEEE
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
In this paper we deal with the problem of feature selection by introducing a new approach based on Gravitational Search Algorithm (GSA). The proposed algorithm combines the optimization behavior of GSA together with the speed of Optimum-Path Forest (OPF) classifier in order to provide a fast and accurate framework for feature selection. Experiments on datasets obtained from a wide range of applications, such as vowel recognition, image classification and fraud detection in power distribution systems are conducted in order to asses the robustness of the proposed technique against Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and a Particle Swarm Optimization (PSO)-based algorithm for feature selection.
Descrição
Palavras-chave
Feature selection, Pattern classification, Optimum-Path Forest, Gravitational Search Algorithm
Idioma
Inglês
Como citar
2011 IEEE International Conference on Acoustics, Speech, and Signal Processing. New York: IEEE, p. 2052-2055, 2011.