Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Uso de Descritores 3D e Intensidade na Detecção de Árvores em Ambiente Urbano por meio de Dados LiDAR

dc.contributor.authorAlencar, Cleber Junior [UNESP]
dc.contributor.authorGalo, Mauricio [UNESP]
dc.contributor.authordos Santos, Renato César [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T20:00:45Z
dc.date.issued2023-01-01
dc.description.abstractThe result derived from tree detection using LiDAR data can be used in different applications such as forest management and preservation, urban planning, detection of occluded objects by tree crowns, among others. In this sense, this work aims to evaluate the applicability of 3D geometric descriptors based on eigenvalues and LiDAR intensity in tree detection. In experiments, it was analyzed the influence of neighborhood (sphere and cylinder) in the calculation of geometric attributes. From visual analyses, it was possible to notice that the use of some geometric attributes such as omnivariance, curvature, planarity and eigenentropy showed more potential in detecting trees. Considering the four selected attributes (omnivariance, curvature, planarity, eigenentropy) and intensity, the K-Means algorithm was executed to each attribute aiming to separate the point cloud into tree and non-tree. The results derived from classification were compared with reference data using quality parameters such as completeness, correctness and F-Score. Completeness values obtained with for omnivariance, eigenentropy, planarity and intensity reached values above 90%, indicating that these descriptors have high reliability for tree detection. The average correctness was around 62%, presenting a large number of false positives. When analyzing F-Score values, it was possible to verify the potential of omnivariance, computed in a spherical neighborhood, in detecting trees from LiDAR data (F-Score above 80%).en
dc.description.affiliationUniversidade Estadual Paulista “Júlio de Mesquita Filho” Programa de Pós-Graduação em Ciências Cartográficas
dc.description.affiliationUniversidade Estadual Paulista “Júlio de Mesquita Filho” Departamento de Cartografia
dc.description.affiliationUnespUniversidade Estadual Paulista “Júlio de Mesquita Filho” Programa de Pós-Graduação em Ciências Cartográficas
dc.description.affiliationUnespUniversidade Estadual Paulista “Júlio de Mesquita Filho” Departamento de Cartografia
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2019/05268-8
dc.description.sponsorshipIdFAPESP: 2020/12481-7
dc.identifierhttp://dx.doi.org/10.14393/rbcv75n0a-63073
dc.identifier.citationRevista Brasileira de Cartografia, v. 75.
dc.identifier.doi10.14393/rbcv75n0a-63073
dc.identifier.issn1808-0936
dc.identifier.issn0560-4613
dc.identifier.scopus2-s2.0-85184477326
dc.identifier.urihttps://hdl.handle.net/11449/304752
dc.language.isopor
dc.relation.ispartofRevista Brasileira de Cartografia
dc.sourceScopus
dc.subjectAirborne LiDAR
dc.subjectIntensity
dc.subjectK-Means
dc.subjectPrincipal Component Analysis
dc.subjectVegetation in urban space
dc.titleUso de Descritores 3D e Intensidade na Detecção de Árvores em Ambiente Urbano por meio de Dados LiDARen
dc.titleThe Use of 3D Descriptors and Intensity to Detect Trees from LiDAR Data in Urban Environmentpt
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-6562-8104[1]
unesp.author.orcid0000-0002-0104-9960[2]
unesp.author.orcid0000-0003-0263-312X[3]

Arquivos

Coleções