Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Growth Analysis of Glyphosate-Resistant and Susceptible Amaranthus palmeri Biotypes

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This study examined the growth parameters of both glyphosate-susceptible and glyphosate-resistant biotypes of Amaranthus palmeri, designated as GA2005 and GA2017, respectively. A two-year microplot field study was conducted to assess their growth characteristics. Scheduled destructive harvests on named harvest days (HD) were conducted to collect measurements for further calculation of net assimilation rate (NAR; g m−2 day−1), specific leaf area (SLA), leaf weight ratio (LWR), stem-to-leaf ratio (SLR), leaf area index (LAI), leaf area ratio (LAR; cm2 g−1), leaf area duration (LAD; days), relative growth rate (RGR; g.g−1 day−1) and plant volume (m3). In addition, stem diameter, number of leaves, and Chlorophyll content (μmol m2) were determined. The main objective was to identify growth parameters that differentiate biotypes along the plant life cycle. While certain growth parameters showed no variation among biotypes, differences in leaf area index (LAI) over HD and chlorophyll content and leaf area duration (LAD) were observed as the main effects. Glyphosate-resistant biotypes exhibited higher LAD and chlorophyll content, potentially conferring a competitive advantage, especially in heavily used glyphosate environments. The study highlights the complexity of intraspecific genetic differentiation, adaptation, and environmental factors affecting A. palmeri. It may offer insights into biotype distinction and resistance spread while advancing our comprehension of species adaptation and growth strategies for enhanced control.

Descrição

Palavras-chave

chlorophyll content, leaf area duration, leaf area index, leaf area ratio, leaf weight ratio, net assimilation rate, palmer amaranth, relative growth rate, specific leaf area, stem-to-leaf ratio

Idioma

Inglês

Citação

Plant-Environment Interactions, v. 5, n. 6, 2024.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso