Logotipo do repositório
 

Publicação:
Machine Learning for Web Intrusion Detection: A Comparative Analysis of Feature Selection Methods mRMR and PFI

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Select from the best features in a complex dataset that is a critical task for machine learning algorithms. This work presents a comparative analysis between two resource selection techniques: Minimum Redundancy Maximum Relevance (mRMR) and Permutation Feature Important (PFI). The application of PFI to the dataset in issue is unusual. The dataset used in the experiments is HTTP CSIC 2010, which shows great results with the mRMR observed in a related work[22]. Our PFI tests resulted in a selection of features best suited for machine learning methods and the best results for an accuracy of 97% with logistic regression and Bayes Point Machine, 98% with Support Vector Machine, and 99.9% using an artificial neural network.

Descrição

Palavras-chave

Feature selection, Intrusion detection, Machine learning

Idioma

Inglês

Como citar

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12415 LNAI, p. 535-546.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação