Logo do repositório

FPGA-based Accelerator for Convolutional Neural Network Application in Mobile Robotics

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

This paper presents the development of a Convolutional Neural Network accelerator based on a Field Programmable Gate Array (FPGA) for the steering control application in a mobile robot. The FPGA-based implementation was benchmarked against an equivalent implementation using a general-purpose processor. The FPGA outperforms the general-purpose processor by significantly reducing processing time. However, the quantization process introduces increased estimation error, and the concurrent execution of the processor for data preprocessing in the accelerator implementation leads to higher power consumption. While the proposed solution is specific to the robot steering control problem, the general insights can be extrapolated to other applications that require high computing performance within power constraints.

Descrição

Palavras-chave

Convolutional Neural Networks, Embedded Systems, FPGA, Hardware Accelerator, Mobile Robotics

Idioma

Inglês

Citação

Proceedings - 2023 Latin American Robotics Symposium, 2023 Brazilian Symposium on Robotics, and 2023 Workshop of Robotics in Education, LARS/SBR/WRE 2023, p. 433-438.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso