High-Rate Altimetry in SNR-Based GNSS-R: Proof-of-Concept of a Synthetic Vertical Array
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Global Navigation Satellite System Reflectometry (GNSS-R) has emerged as a promising remote sensing technique for coastal sea level monitoring. GNSS-R based on signal-to-noise ratio (SNR) observations employs a single antenna and a conventional receiver. It performs best for low elevation satellites, where direct and reflected radio waves are very similar in polarization and direction of arrival. One of the disadvantages of SNR-based GNSS-R for sea level altimetry is its low temporal resolution, which is of the order of 1 h for each independent satellite pass. Here, we present a proof-of-concept based on a synthetic vertical array. It exploits the mechanical movement of a single antenna at a high rate (about 1 Hz). SNR observations can then be fit to a known modulation, of the order of the antenna sweeping rate. We demonstrate that centimetric altimetry precision can be achieved in a 5-min session.
Descrição
Palavras-chave
Altimetry, Antennas, Global navigation satellite system, Global Navigation Satellite System (GNSS), GNSS reflectometry (GNSS-R)., Satellite antennas, Satellites, Signal to noise ratio, Surface waves
Idioma
Inglês
Citação
IEEE Geoscience and Remote Sensing Letters.




