Logotipo do repositório
 

Publicação:
Automated EEG Signals Analysis Using Quantile Graphs

dc.contributor.authorCampanharo, Andriana S. L. O. [UNESP]
dc.contributor.authorDoescher, Erwin
dc.contributor.authorRamos, Fernando M.
dc.contributor.authorRojas, I
dc.contributor.authorJoya, G.
dc.contributor.authorCatala, A.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Paulo (UNIFESP)
dc.contributor.institutionInst Nacl Pesquisas Espaciais
dc.date.accessioned2018-11-26T17:55:12Z
dc.date.available2018-11-26T17:55:12Z
dc.date.issued2017-01-01
dc.description.abstractRecently, a map from time series to networks has been proposed [7,6], allowing the use of network statistics to characterize time series. In this approach, time series quantiles are naturally mapped into nodes of a graph. Networks generated by this method, called Quantile Graphs (QGs), are able to capture and quantify features such as long-range correlations or randomness present in the underlying dynamics of the original signal. Here we apply the QG method to the problem of detecting the differences between electroencephalographic time series (EEG) of healthy and unhealthy subjects. Our main goal is to illustrate how the differences in dynamics are reflected in the topology of the corresponding QGs. Results show that the QG method cannot only differentiate epileptic from normal data, but also distinguish the different abnormal stages/patterns of a seizure, such as preictal (EEG changes preceding a seizure) and ictal (EEG changes during a seizure).en
dc.description.affiliationUniv Estadual Paulista, Dept Bioestat, Inst Biociencias, Botucatu, SP, Brazil
dc.description.affiliationUniv Fed Sao Paulo, Dept Ciencia & Tecnol, Campus Sao Jose dos Campos, Sao Paulo, Brazil
dc.description.affiliationInst Nacl Pesquisas Espaciais, Lab Comp & Matemat Aplicada, Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Bioestat, Inst Biociencias, Botucatu, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/19905-3
dc.format.extent95-103
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-59147-6_9
dc.identifier.citationAdvances In Computational Intelligence, Iwann 2017, Pt Ii. Cham: Springer International Publishing Ag, v. 10306, p. 95-103, 2017.
dc.identifier.doi10.1007/978-3-319-59147-6_9
dc.identifier.fileWOS000443108700009.pdf
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/164585
dc.identifier.wosWOS:000443108700009
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofAdvances In Computational Intelligence, Iwann 2017, Pt Ii
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectElectroencephalographic time series
dc.subjectEpilepsy
dc.subjectComplex networks
dc.subjectQuantile graphs
dc.titleAutomated EEG Signals Analysis Using Quantile Graphsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.lattes4947092280690606[1]
unesp.author.orcid0000-0002-0501-5303[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentBioestatística - IBBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000443108700009.pdf
Tamanho:
623.24 KB
Formato:
Adobe Portable Document Format
Descrição: