Publicação: Automated EEG Signals Analysis Using Quantile Graphs
dc.contributor.author | Campanharo, Andriana S. L. O. [UNESP] | |
dc.contributor.author | Doescher, Erwin | |
dc.contributor.author | Ramos, Fernando M. | |
dc.contributor.author | Rojas, I | |
dc.contributor.author | Joya, G. | |
dc.contributor.author | Catala, A. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal de São Paulo (UNIFESP) | |
dc.contributor.institution | Inst Nacl Pesquisas Espaciais | |
dc.date.accessioned | 2018-11-26T17:55:12Z | |
dc.date.available | 2018-11-26T17:55:12Z | |
dc.date.issued | 2017-01-01 | |
dc.description.abstract | Recently, a map from time series to networks has been proposed [7,6], allowing the use of network statistics to characterize time series. In this approach, time series quantiles are naturally mapped into nodes of a graph. Networks generated by this method, called Quantile Graphs (QGs), are able to capture and quantify features such as long-range correlations or randomness present in the underlying dynamics of the original signal. Here we apply the QG method to the problem of detecting the differences between electroencephalographic time series (EEG) of healthy and unhealthy subjects. Our main goal is to illustrate how the differences in dynamics are reflected in the topology of the corresponding QGs. Results show that the QG method cannot only differentiate epileptic from normal data, but also distinguish the different abnormal stages/patterns of a seizure, such as preictal (EEG changes preceding a seizure) and ictal (EEG changes during a seizure). | en |
dc.description.affiliation | Univ Estadual Paulista, Dept Bioestat, Inst Biociencias, Botucatu, SP, Brazil | |
dc.description.affiliation | Univ Fed Sao Paulo, Dept Ciencia & Tecnol, Campus Sao Jose dos Campos, Sao Paulo, Brazil | |
dc.description.affiliation | Inst Nacl Pesquisas Espaciais, Lab Comp & Matemat Aplicada, Sao Jose Dos Campos, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Bioestat, Inst Biociencias, Botucatu, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2013/19905-3 | |
dc.format.extent | 95-103 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-319-59147-6_9 | |
dc.identifier.citation | Advances In Computational Intelligence, Iwann 2017, Pt Ii. Cham: Springer International Publishing Ag, v. 10306, p. 95-103, 2017. | |
dc.identifier.doi | 10.1007/978-3-319-59147-6_9 | |
dc.identifier.file | WOS000443108700009.pdf | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/11449/164585 | |
dc.identifier.wos | WOS:000443108700009 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Advances In Computational Intelligence, Iwann 2017, Pt Ii | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Electroencephalographic time series | |
dc.subject | Epilepsy | |
dc.subject | Complex networks | |
dc.subject | Quantile graphs | |
dc.title | Automated EEG Signals Analysis Using Quantile Graphs | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
dspace.entity.type | Publication | |
unesp.author.lattes | 4947092280690606[1] | |
unesp.author.orcid | 0000-0002-0501-5303[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatu | pt |
unesp.department | Bioestatística - IBB | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000443108700009.pdf
- Tamanho:
- 623.24 KB
- Formato:
- Adobe Portable Document Format
- Descrição: