Logotipo do repositório
 

Publicação:
Comparative study between RBF and radial-PPS neural networks

dc.contributor.authorMarar, João Fernando [UNESP]
dc.contributor.authorCarvalho, ECB
dc.contributor.authordos Santos, J. D.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:25:55Z
dc.date.available2014-05-20T13:25:55Z
dc.date.issued1998-01-01
dc.description.abstractThe study of function approximation is motivated by the human limitation and inability to register and manipulate with exact precision the behavior variations of the physical nature of a phenomenon. These variations are referred to as signals or signal functions. Many real world problem can be formulated as function approximation problems and from the viewpoint of artificial neural networks these can be seen as the problem of searching for a mapping that establishes a relationship from an input space to an output space through a process of network learning. Several paradigms of artificial neural networks (ANN) exist. Here we will be investigated a comparative of the ANN study of RBF with radial Polynomial Power of Sigmoids (PPS) in function approximation problems. Radial PPS are functions generated by linear combination of powers of sigmoids functions. The main objective of this paper is to show the advantages of the use of the radial PPS functions in relationship traditional RBF, through adaptive training and ridge regression techniques.en
dc.description.affiliationUniv Estadual Paulista, Dept Comp Sci, Bauru, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Comp Sci, Bauru, SP, Brazil
dc.format.extent593-602
dc.identifierhttp://dx.doi.org/10.1117/12.304830
dc.identifier.citationApplications and Science of Computational Intelligence. Bellingham: Spie-int Soc Optical Engineering, v. 3390, p. 593-602, 1998.
dc.identifier.doi10.1117/12.304830
dc.identifier.issn0277-786X
dc.identifier.lattes1233049484488761
dc.identifier.urihttp://hdl.handle.net/11449/8272
dc.identifier.wosWOS:000073452600061
dc.language.isoeng
dc.publisherSpie - Int Soc Optical Engineering
dc.relation.ispartofApplications and Science of Computational Intelligence
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectPPS-waveletspt
dc.subjectneural networkspt
dc.subjectfunction approximationpt
dc.subjectwavelet transformpt
dc.titleComparative study between RBF and radial-PPS neural networksen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://proceedings.spiedigitallibrary.org/ss/TermsOfUse.aspx
dcterms.rightsHolderSpie-int Soc Optical Engineering
dspace.entity.typePublication
unesp.author.lattes1233049484488761
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: