Novel buckled graphenylene-like InN and its strain engineering effects
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
This paper reveals the structural, electronic and mechanical properties of a novel inorganic graphenylene based on indium nitride (IGP-InN). The IGP-InN was characterized via density functional theory (DFT) simulations. The phonon dispersion shows the dynamic stability of IGP-InN, and molecular dynamics simulations confirm its thermal stability up to 700 K. Besides the electronic properties, the indirect band gap transition with energy (Egap) of 2.49 eV makes IGP-InN suitable for optoelectronic applications under UV–visible. Also, the Egap tunability with mechanical strain was analyzed, with a decrease of 1.19 eV in the Egap for tensile strains. The structural buckling plays an important role, with a transition to a planar structure for tensile strains. This work reveals a new class of 2D materials, buckled inorganic graphenylenes, and provides valuable insights into designing and optimizing graphenylene-like materials.
Descrição
Palavras-chave
2D materials, Biphenylene-like, Dodecagonal, Graphenylene, InN, Strain
Idioma
Inglês
Citação
Computational and Theoretical Chemistry, v. 1231.





