Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Metaheuristic Algorithms for Enhancing Multicepstral Representation in Voice Spoofing Detection: An Experimental Approach

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The problem of voice spoofing detection is critical for identity authentication within biometric systems. Among the existing countermeasures, those based on soft computing have received attention from researchers in the last few years. However, it is known that spoofing representation is only effective when many features are used, which limits its applicability due to the curse of dimensionality. Accordingly, we focus on strategies to reduce the dimensionality of multicepstral features while maintaining reasonable accuracy in distinguishing between real and spoofed voices. Given the complexity of voice data, identifying and prioritizing the features with the highest information content is of utmost relevance. The study utilized four metaheuristic algorithms-GA, DA, PSO, and GWO for dimension reduction. The findings indicate that all algorithms, particularly GWO, exceed baseline performance levels. This demonstrates their efficacy in detecting voice spoofing. Moreover, it was found that certain combinations of cepstral coefficients when applied with principal component analysis projection, notably enhanced the model’s performance of voice spoofing detection.

Descrição

Palavras-chave

Cepstral Features, Dimensionality Reduction, Metaheuristic Algorithms, Spoofing Detection

Idioma

Inglês

Citação

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 14788 LNCS, p. 247-262.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso