Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Metaheuristic Algorithms for Enhancing Multicepstral Representation in Voice Spoofing Detection: An Experimental Approach

dc.contributor.authorContreras, Rodrigo Colnago [UNESP]
dc.contributor.authorHeck, Gustavo Luiz
dc.contributor.authorViana, Monique Simplicio
dc.contributor.authordos Santos Bongarti, Marcelo Adriano
dc.contributor.authorZamani, Hoda
dc.contributor.authorGuido, Rodrigo Capobianco [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionWeierstrass Institute
dc.contributor.institutionIslamic Azad University
dc.date.accessioned2025-04-29T19:34:56Z
dc.date.issued2024-01-01
dc.description.abstractThe problem of voice spoofing detection is critical for identity authentication within biometric systems. Among the existing countermeasures, those based on soft computing have received attention from researchers in the last few years. However, it is known that spoofing representation is only effective when many features are used, which limits its applicability due to the curse of dimensionality. Accordingly, we focus on strategies to reduce the dimensionality of multicepstral features while maintaining reasonable accuracy in distinguishing between real and spoofed voices. Given the complexity of voice data, identifying and prioritizing the features with the highest information content is of utmost relevance. The study utilized four metaheuristic algorithms-GA, DA, PSO, and GWO for dimension reduction. The findings indicate that all algorithms, particularly GWO, exceed baseline performance levels. This demonstrates their efficacy in detecting voice spoofing. Moreover, it was found that certain combinations of cepstral coefficients when applied with principal component analysis projection, notably enhanced the model’s performance of voice spoofing detection.en
dc.description.affiliationInstitute of Biosciences Letters and Exact Sciences São Paulo State University (UNESP), SP
dc.description.affiliationUniversity of São Paulo, SP
dc.description.affiliationFederal University of São Carlos, SP
dc.description.affiliationWeierstrass Institute
dc.description.affiliationFaculty of Computer Engineering Islamic Azad University
dc.description.affiliationBig Data Research Center Najafabad Branch Islamic Azad University
dc.description.affiliationUnespInstitute of Biosciences Letters and Exact Sciences São Paulo State University (UNESP), SP
dc.format.extent247-262
dc.identifierhttp://dx.doi.org/10.1007/978-981-97-7181-3_20
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 14788 LNCS, p. 247-262.
dc.identifier.doi10.1007/978-981-97-7181-3_20
dc.identifier.issn1611-3349
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85202608367
dc.identifier.urihttps://hdl.handle.net/11449/304446
dc.language.isoeng
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.sourceScopus
dc.subjectCepstral Features
dc.subjectDimensionality Reduction
dc.subjectMetaheuristic Algorithms
dc.subjectSpoofing Detection
dc.titleMetaheuristic Algorithms for Enhancing Multicepstral Representation in Voice Spoofing Detection: An Experimental Approachen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-4003-7791 0000-0003-4003-7791[1]
unesp.author.orcid0009-0001-9630-8637[2]
unesp.author.orcid0000-0002-2960-8293[3]
unesp.author.orcid0000-0002-9027-7702[4]
unesp.author.orcid0000-0003-0444-4509 0000-0003-0444-4509[5]
unesp.author.orcid0000-0002-0924-8024[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos