Publicação: Photoluminescence tuning and energy transfer process from Tb3+ to Eu3+ in GPTMS/TEOS–derived organic/silica hybrid films
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
In this work the photoluminescence study and energy transfer from Tb3+ to Eu3+–β–diketonate complexes incorporated into organic/Silica hybrid films derived from 3–glycidoxypropyltrimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) alkoxysilanes were investigated. Highly homogeneous and transparent films of Ln3+–doped GPTMS/TEOS–derived organic/silica hybrids were obtained from the organic/silica sols prepared by sol–gel. Tb3+:Eu3+–doped GPTMS/TEOS–derived films showed very intense luminescence when excited with UV light. Films co–doped with Tb3+ concentration fixed at 40.0×1018 ions/cm3 and Eu3+ concentrations of 0, 0.03, 0.05, 0.1, 0.3, 0.5, 1.0, 1.5, and 2.0×1018 ions/cm3 were studied. The films presented characteristic transitions 5D4–7F6-3 of Tb3+ ions and 5D0–7F0–4 of Eu3+ ions measured on the visible spectrum region. Energy transfer from Terbium to Europium was studied through emission decay time measurements of 5D4–7F5 transition of Tb3+ (547 nm) which showed an accentuated decrease (from 1329 to 55 µs) due to the co–doping with Eu3+ ions concentrations varied from 0.03 to 1.5×1018 ions/cm3. Energy transfer rate (WET) of 17.4×103 s−1 and relative energy transfer efficiency (ηT) of 96% were observed for films samples co–doped with 40×1018 ions/cm3 of Tb3+ and 1.5×1018 ions/cm3 of Eu3+. Due to the variation in WET and ηT from Tb3+ to Eu3+, the intensity ratios of Tb3+ band at 547 nm (5D4–7F5) and Eu3+ band at 617 nm (5D0–7F2) vary remarkably making the co–doped film samples exhibit different luminescence colors varying from green to orange and red which can be tuned by the Tb3+/Eu3+ ratio incorporated into the samples.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Journal of Luminescence, v. 197, p. 370-375.