Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Development of Cerium Oxide-Laden GelMA/PCL Scaffolds for Periodontal Tissue Engineering

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This study investigated gelatin methacryloyl (GelMA) and polycaprolactone (PCL) blend scaffolds incorporating cerium oxide (CeO) nanoparticles at concentrations of 0%, 5%, and 10% w/w via electrospinning for periodontal tissue engineering. The impact of photocrosslinking on these scaffolds was evaluated by comparing crosslinked (C) and non-crosslinked (NC) versions. Methods included Fourier transform infrared spectroscopy (FTIR) for chemical analysis, scanning electron microscopy (SEM) for fiber morphology/diameters, and assessments of swelling capacity, degradation profile, and biomechanical properties. Biological evaluations with alveolar bone-derived mesenchymal stem cells (aBMSCs) and human gingival fibroblasts (HGFs) encompassed tests for cell viability, mineralized nodule deposition (MND), and collagen production (CP). Statistical analysis was performed using Kruskal–Wallis or ANOVA/post-hoc tests (α = 5%). Results indicate that C scaffolds had larger fiber diameters (~250 nm) compared with NC scaffolds (~150 nm). NC scaffolds exhibited higher swelling capacities than C scaffolds, while both types demonstrated significant mass loss (~50%) after 60 days (p < 0.05). C scaffolds containing CeO showed increased Young’s modulus and tensile strength than NC scaffolds. Cells cultured on C scaffolds with 10% CeO exhibited significantly higher metabolic activity (>400%, p < 0.05) after 7 days among all groups. Furthermore, CeO-containing scaffolds promoted enhanced MND by aBMSCs (>120%, p < 0.05) and increased CP in 5% CeO scaffolds for both variants (>180%, p < 0.05). These findings underscore the promising biomechanical properties, biodegradability, cytocompatibility, and enhanced tissue regenerative potential of CeO-loaded GelMA/PCL scaffolds for periodontal applications.

Descrição

Palavras-chave

cerium oxide, electrospinning, gelatin methacryloyl, periodontium, polycaprolactone

Idioma

Inglês

Citação

Materials, v. 17, n. 16, 2024.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso