Logotipo do repositório
 

Publicação:
An operational dynamical neuro-forecasting model for hydrological disasters

dc.contributor.authorLima, Glauston R. T. de
dc.contributor.authorSantos, Leonardo B. L.
dc.contributor.authorCarvalho, Tiago J. de
dc.contributor.authorCarvalho, Adenilson R.
dc.contributor.authorCortivo, Fabio D. [UNESP]
dc.contributor.authorScofield, Graziela B.
dc.contributor.authorNegri, Rogerio G. [UNESP]
dc.contributor.institutionNatl Ctr Monitoring & Early Warning Nat Disasters
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFed Inst Educ Sci & Technol Sao Paulo
dc.date.accessioned2019-10-03T18:18:44Z
dc.date.available2019-10-03T18:18:44Z
dc.date.issued2016-06-01
dc.description.abstractIn the last decades, artificial neural network has been increasingly applied in hydrological modeling given its potential to process the complex nonlinear relationships of the associated physical-environmental variables and produce a suitable solution (for instance, a forecasting model) in a relatively short time. In this scope, this work reports the design methodology and the operational results obtained with an artificial neural network-based model developed to forecast, with 2 h in advance, the level of a river in the mountainous region of Rio de Janeiro state in Brazil. This is an area susceptible to natural disasters with recent records of floods and landslides that caused environmental and socio-economic damage of large proportions. The proposed neural network uses an innovative learning algorithm (the quasi-Newton optimization method is applied to the slopes of each hidden activation function) and, as input features, values of rainfall and river level data collected from 8 monitoring stations located on studied watershed between 2013 and 2014. The results of the neural model, with NASH index greater than 0.86, are promising making possible its operational use on an issuing flood alerts system.en
dc.description.affiliationNatl Ctr Monitoring & Early Warning Nat Disasters, Estr Doutor Altino Bondesan 500, BR-12247016 Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationUNESP Univ Estadual Paulista, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationFed Inst Educ Sci & Technol Sao Paulo, Campinas, SP, Brazil
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Inst Sci & Technol, Sao Jose Dos Campos, SP, Brazil
dc.format.extent9
dc.identifierhttp://dx.doi.org/10.1007/s40808-016-0145-3
dc.identifier.citationModeling Earth Systems And Environment. Heidelberg: Springer Heidelberg, v. 2, n. 2, 9 p., 2016.
dc.identifier.doi10.1007/s40808-016-0145-3
dc.identifier.issn2363-6203
dc.identifier.urihttp://hdl.handle.net/11449/183976
dc.identifier.wosWOS:000443087600045
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofModeling Earth Systems And Environment
dc.rights.accessRightsAcesso restritopt
dc.sourceWeb of Science
dc.subjectHydrological disasters
dc.subjectFlood warnings
dc.subjectRiver level forecasting
dc.subjectData-driven hydrological modeling
dc.subjectArtificial neural network
dc.titleAn operational dynamical neuro-forecasting model for hydrological disastersen
dc.typeArtigopt
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, São José dos Campospt

Arquivos