Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
As the world increasingly relies on emerging technologies like the Internet of Things, there is a growing demand for large-scale distributed software to perform various tasks, facilitate communication, and share resources between devices. However, the implementation and configuration of such softwares can create openings for intrusion attacks through vulnerabilities and weaknesses. To address this concern, we have developed a machine-learning solution that leverages Logistic Regression and Random Forest classifiers with data balancing techniques to classify intrusion attacks accurately. Our experiments demonstrated the most effective results using the Random Forest classifier and oversampling techniques.
Descrição
Palavras-chave
Cyberattack, Cybersecurity, Internet of Things, Intrusion Detection, Resampling
Idioma
Inglês
Citação
International Conference on Systems, Signals, and Image Processing.





