Logo do repositório

Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

As the world increasingly relies on emerging technologies like the Internet of Things, there is a growing demand for large-scale distributed software to perform various tasks, facilitate communication, and share resources between devices. However, the implementation and configuration of such softwares can create openings for intrusion attacks through vulnerabilities and weaknesses. To address this concern, we have developed a machine-learning solution that leverages Logistic Regression and Random Forest classifiers with data balancing techniques to classify intrusion attacks accurately. Our experiments demonstrated the most effective results using the Random Forest classifier and oversampling techniques.

Descrição

Palavras-chave

Cyberattack, Cybersecurity, Internet of Things, Intrusion Detection, Resampling

Idioma

Inglês

Citação

International Conference on Systems, Signals, and Image Processing.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso