Publicação: The impact of chaotic saddles on the synchronization of complex networks of discrete-Time units
dc.contributor.author | Medeiros, Everton S. | |
dc.contributor.author | Medrano, Rene O.-T. [UNESP] | |
dc.contributor.author | Caldas, Iberê L. | |
dc.contributor.author | Feudel, Ulrike | |
dc.contributor.institution | Technische Universität Berlin | |
dc.contributor.institution | Universidade Federal de São Paulo (UNIFESP) | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Carl von Ossietzky University of Oldenburg | |
dc.date.accessioned | 2022-04-29T08:29:29Z | |
dc.date.available | 2022-04-29T08:29:29Z | |
dc.date.issued | 2021-09-01 | |
dc.description.abstract | A chaotic saddle is a common nonattracting chaotic set well known for generating finite-Time chaotic behavior in low and high-dimensional systems. In general, dynamical systems possessing chaotic saddles in their state-space exhibit irregular behavior with duration lengths following an exponential distribution. However, when these systems are coupled into networks the chaotic saddle plays a role in the long-Term dynamics by trapping network trajectories for times that are indefinitely long. This process transforms the network s high-dimensional state-space by creating an alternative persistent desynchronized state coexisting with the completely synchronized one. Such coexistence threatens the synchronized state with vulnerability to external perturbations. We demonstrate the onset of this phenomenon in complex networks of discrete-Time units in which the synchronization manifold is perturbed either in the initial instant of time or in arbitrary states of its asymptotic dynamics. The role of topological asymmetries of Erdös Renyi and Barabási Albert graphs are investigated. Besides, the required coupling strength for the occurrence of trapping in the chaotic saddle is unveiled. | en |
dc.description.affiliation | Institut fur Theoretische Physik Technische Universität Berlin, Hardenbergstraße 36 | |
dc.description.affiliation | Departamento de Física Universidade Federal de São Paulo Campus Diadema, R. São Nicolau, 210 | |
dc.description.affiliation | Departamento de Física Universidade Estadual Paulista Instituto de Geociências e Ciências Exatas, Av. 24A, 1515 | |
dc.description.affiliation | Institute of Physics University of São Paulo, Rua doMatão, Travessa R 187 | |
dc.description.affiliation | Institute for Chemistry and Biology of the Marine Environment Carl von Ossietzky University of Oldenburg | |
dc.description.affiliationUnesp | Departamento de Física Universidade Estadual Paulista Instituto de Geociências e Ciências Exatas, Av. 24A, 1515 | |
dc.identifier | http://dx.doi.org/10.1088/2632-072X/abedc2 | |
dc.identifier.citation | Journal of Physics: Complexity, v. 2, n. 3, 2021. | |
dc.identifier.doi | 10.1088/2632-072X/abedc2 | |
dc.identifier.issn | 2632-072X | |
dc.identifier.scopus | 2-s2.0-85105041915 | |
dc.identifier.uri | http://hdl.handle.net/11449/228934 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Physics: Complexity | |
dc.source | Scopus | |
dc.subject | Chaotic saddle | |
dc.subject | Networks | |
dc.subject | Synchronization | |
dc.title | The impact of chaotic saddles on the synchronization of complex networks of discrete-Time units | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0001-8531-6327[1] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |
unesp.department | Física - IGCE | pt |