Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Neighbor Embedding Projection and Graph Convolutional Networks for Image Classification

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The exponential increase in image data has heightened the need for machine learning applications, particularly in image classification across various fields. However, while data volume has surged, the availability of labeled data remains limited due to the costly and time-intensive nature of labeling. Semi-supervised learning offers a promising solution by utilizing both labeled and unlabeled data; it employs a small amount of labeled data to guide learning on a larger unlabeled set, thus reducing the dependency on extensive labeling efforts. Graph Convolutional Networks (GCNs) introduce an effective method by applying convolutions in graph space, allowing information propagation across connected nodes. This technique captures individual node features and inter-node relationships, facilitating the discovery of intricate patterns in graph-structured data. Despite their potential, GCNs remain underutilized in image data scenarios, where input graphs are often computed using features extracted from pre-trained models without further enhancement. This work proposes a novel GCN-based approach for image classification, incorporating neighbor embedding projection techniques to refine the similarity graph and improve the latent feature space. Similarity learning approaches, commonly employed in image retrieval, are also integrated into our workflow. Experimental evaluations across three datasets, four feature extractors, and three GCN models revealed superior results in most scenarios.

Descrição

Palavras-chave

Graph Convolutional Networks, Neighbor Embedding Projection, Semi-Supervised Learning

Idioma

Inglês

Citação

Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 2, p. 511-518.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso