Logotipo do repositório
 

Publicação:
Prediction of genomic breeding values for reproductive traits in Nellore heifers

dc.contributor.authorCosta, Raphael Bermal [UNESP]
dc.contributor.authorIrano, Natalia [UNESP]
dc.contributor.authorSolar Diaz, Lara Del Pilar [UNESP]
dc.contributor.authorTakada, Luciana [UNESP]
dc.contributor.authorHermisdorff, Isis da Costa
dc.contributor.authorCarvalheiro, Roberto [UNESP]
dc.contributor.authorBaldi, Fernando [UNESP]
dc.contributor.authorOliveira, Henrique Nunes de [UNESP]
dc.contributor.authorTonhati, Humberto [UNESP]
dc.contributor.authorAlbuquerque, Lucia Galva de [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal da Bahia (UFBA)
dc.date.accessioned2019-10-05T08:00:48Z
dc.date.available2019-10-05T08:00:48Z
dc.date.issued2019-02-01
dc.description.abstractThe objective of this study was to assess the accuracy of genomic predictions for female reproductive traits in Nellore cattle. A total of 1853 genotyped cows and 305,348 SNPs were used for genomic selection analyses. GBLUP, BAYESC pi, and IBLASSO were applied to estimate SNP effects. The pseudo-phenotypes used as dependent variables were: observed phenotype (PHEN), adjusted phenotype (CPHEN), estimated breeding value (EBV), and deregressed estimated breeding value (DEBV). Predictive abilities were assessed by the average correlation between CPHEN and genomic estimated breeding value (GEBV) and by the average correlation between DEBV and GEBV in the validation population. Regression coefficients of pseudo phenotypes on GEBV in the validation population were indicators of prediction bias in GEBV. BAYESC pi showed higher predictive ability to estimate SNP effects and GEBV for all traits. (C) 2018 Elsevier Inc. All rights reserved.en
dc.description.affiliationSao Paulo State Univ, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, Brazil
dc.description.affiliationUniv Fed Bahia, Ave Adhemar de Barros 500, BR-40170110 Salvador, BA, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: :2009/16118-5
dc.format.extent12-17
dc.identifierhttp://dx.doi.org/10.1016/j.theriogenology.2018.10.014
dc.identifier.citationTheriogenology. New York: Elsevier Science Inc, v. 125, p. 12-17, 2019.
dc.identifier.doi10.1016/j.theriogenology.2018.10.014
dc.identifier.issn0093-691X
dc.identifier.urihttp://hdl.handle.net/11449/186587
dc.identifier.wosWOS:000455972500003
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofTheriogenology
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectGenomic selection
dc.subjectPredicative ability
dc.subjectReproductive efficiency
dc.subjectSNP
dc.titlePrediction of genomic breeding values for reproductive traits in Nellore heifersen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0002-4506-0555[6]
unesp.author.orcid0000-0003-4094-2011[7]
unesp.departmentZootecnia - FCAVpt

Arquivos