Logo do repositório

A Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimates

dc.contributor.authorRibeiro, Vitor P. [UNESP]
dc.contributor.authorDesuó Neto, Luiz
dc.contributor.authorMarques, Patricia A. A.
dc.contributor.authorAchcar, Jorge A.
dc.contributor.authorJunqueira, Adriano M. [UNESP]
dc.contributor.authorChinatto, Adilson W.
dc.contributor.authorJunqueira, Cynthia C. M.
dc.contributor.authorMaciel, Carlos D.
dc.contributor.authorBalestieri, José Antônio P. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionEspectro Ltd.
dc.date.accessioned2025-04-29T20:06:36Z
dc.date.issued2023-12-01
dc.description.abstractThe sustainable use of water resources is of utmost importance given climatological changes and water scarcity, alongside the many socioeconomic factors that rely on clean water availability, such as food security. In this context, developing tools to minimize water waste in irrigation is paramount for sustainable food production. The evapotranspiration estimate is a tool to evaluate the water volume required to achieve optimal crop yield with the least amount of water waste. The Penman-Monteith equation is the gold standard for this task, despite it becoming inapplicable if any of its required climatological variables are missing. In this paper, we present a stochastic Bayesian framework to model the non-linear and non-stationary time series for the evapotranspiration estimate via Bayesian regression. We also leverage Bayesian networks and Bayesian inference to provide estimates for missing climatological data. Our obtained Bayesian regression equation achieves 0.087 mm · day (Formula presented.) for the RMSE metric, compared to the expected time series, with wind speed and net incident solar radiation as the main components. Lastly, we show that the evapotranspiration time series, with missing climatological data inferred by the Bayesian network, achieves an RMSE metric ranging from (Formula presented.) to 0.286 mm · day (Formula presented.).en
dc.description.affiliationSchool of Engineering and Sciences São Paulo State University (UNESP), SP
dc.description.affiliationDepartment of Electrical and Computer Engineering University of São Paulo (USP), SP
dc.description.affiliationDepartment of Biosystems Engineering University of São Paulo (USP), SP
dc.description.affiliationMedical School University of São Paulo (USP), SP
dc.description.affiliationEspectro Ltd., SP
dc.description.affiliationUnespSchool of Engineering and Sciences São Paulo State University (UNESP), SP
dc.identifierhttp://dx.doi.org/10.3390/agronomy13122970
dc.identifier.citationAgronomy, v. 13, n. 12, 2023.
dc.identifier.doi10.3390/agronomy13122970
dc.identifier.issn2073-4395
dc.identifier.scopus2-s2.0-85180687155
dc.identifier.urihttps://hdl.handle.net/11449/306577
dc.language.isoeng
dc.relation.ispartofAgronomy
dc.sourceScopus
dc.subjectartificial intelligence
dc.subjectBayesian inference
dc.subjectdecision support system
dc.subjectirrigation planning
dc.subjectstochastic modeling
dc.titleA Stochastic Bayesian Artificial Intelligence Framework to Assess Climatological Water Balance under Missing Variables for Evapotranspiration Estimatesen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-8458-8144[1]
unesp.author.orcid0000-0001-8629-1870[2]
unesp.author.orcid0000-0002-6818-4833[3]
unesp.author.orcid0000-0002-9868-9453[4]
unesp.author.orcid0000-0002-7889-2948[5]
unesp.author.orcid0000-0002-9286-1160[6]
unesp.author.orcid0000-0003-0486-3420[7]
unesp.author.orcid0000-0003-0137-6678[8]
unesp.author.orcid0000-0003-0762-0854[9]

Arquivos

Coleções