Logotipo do repositório
 

Publicação:
Learning to Classify Seismic Images with Deep Optimum-Path Forest

dc.contributor.authorAfonso, Luis
dc.contributor.authorVidal, Alexandre
dc.contributor.authorKuroda, Michelle
dc.contributor.authorFalcao, Alexandre
dc.contributor.authorPapa, Joao [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:39:43Z
dc.date.available2018-11-26T17:39:43Z
dc.date.issued2016-01-01
dc.description.abstractDue to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Geol, Campinas, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Comp, Campinas, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 479070/2013-0
dc.description.sponsorshipIdCNPq: 302970/2014-2
dc.format.extent401-407
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2016.59
dc.identifier.citation2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 401-407, 2016.
dc.identifier.doi10.1109/SIBGRAPI.2016.59
dc.identifier.issn1530-1834
dc.identifier.urihttp://hdl.handle.net/11449/163003
dc.identifier.wosWOS:000405493800053
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectOptimum-Path Forest
dc.subjectImage Clustering
dc.subjectDeep Representations
dc.subjectSeismic Images
dc.titleLearning to Classify Seismic Images with Deep Optimum-Path Foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos