Publicação: Learning to Classify Seismic Images with Deep Optimum-Path Forest
dc.contributor.author | Afonso, Luis | |
dc.contributor.author | Vidal, Alexandre | |
dc.contributor.author | Kuroda, Michelle | |
dc.contributor.author | Falcao, Alexandre | |
dc.contributor.author | Papa, Joao [UNESP] | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T17:39:43Z | |
dc.date.available | 2018-11-26T17:39:43Z | |
dc.date.issued | 2016-01-01 | |
dc.description.abstract | Due to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach. | en |
dc.description.affiliation | Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Inst Geol, Campinas, SP, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Inst Comp, Campinas, SP, Brazil | |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Bauru, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | FAPESP: 2014/16250-9 | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.description.sponsorshipId | CNPq: 479070/2013-0 | |
dc.description.sponsorshipId | CNPq: 302970/2014-2 | |
dc.format.extent | 401-407 | |
dc.identifier | http://dx.doi.org/10.1109/SIBGRAPI.2016.59 | |
dc.identifier.citation | 2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 401-407, 2016. | |
dc.identifier.doi | 10.1109/SIBGRAPI.2016.59 | |
dc.identifier.issn | 1530-1834 | |
dc.identifier.uri | http://hdl.handle.net/11449/163003 | |
dc.identifier.wos | WOS:000405493800053 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi) | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.subject | Optimum-Path Forest | |
dc.subject | Image Clustering | |
dc.subject | Deep Representations | |
dc.subject | Seismic Images | |
dc.title | Learning to Classify Seismic Images with Deep Optimum-Path Forest | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |