Logotipo do repositório
 

Publicação:
Reconstrução histórica de mudanças na cobertura florestal em várzeas do baixo amazonas utilizando o algoritmo landtrendr

dc.contributor.authorFragal, Everton Hafemann
dc.contributor.authorSilva, Thiago Sanna Freire [UNESP]
dc.contributor.authorNovo, Evlyn Márcia Leão de Moraes
dc.contributor.institutionInstituto Nacional de Pesquisas Espaciais, Divisão de Sensoriamento Remoto
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T16:58:58Z
dc.date.available2018-12-11T16:58:58Z
dc.date.issued2016-01-01
dc.description.abstractThe Amazon várzeas are an important component of the Amazon biome, but anthropic and climatic impacts have been leading to forest loss and interruption of essential ecosystem functions and services. The objectives of this study were to evaluate the capability of the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) algorithm to characterize changes in várzea forest cover in the Lower Amazon, and to analyze the potential of spectral and temporal attributes to classify forest loss as either natural or anthropogenic. We used a time series of 37 Landsat TM and ETM+ images acquired between 1984 and 2009. We used the LandTrendr algorithm to detect forest cover change and the attributes of “start year”, “magnitude”, and “duration” of the changes, as well as “NDVI at the end of series”. Detection was restricted to areas identified as having forest cover at the start and/or end of the time series. We used the Support Vector Machine (SVM) algorithm to classify the extracted attributes, differentiating between anthropogenic and natural forest loss. Detection reliability was consistently high for change events along the Amazon River channel, but variable for changes within the floodplain. Spectral-temporal trajectories faithfully represented the nature of changes in floodplain forest cover, corroborating field observations. We estimated anthropogenic forest losses to be larger (1.071 ha) than natural losses (884 ha), with a global classification accuracy of 94%. We conclude that the LandTrendr algorithm is a reliable tool for studies of forest dynamics throughout the floodplain.en
dc.description.affiliationInstituto Nacional de Pesquisas Espaciais, Divisão de Sensoriamento Remoto, Avenida dos Astronautas, 1758, Jardim da Granja
dc.description.affiliationInstituto de Geociências e Ciências Exatas, UNESP - Universidade Estadual Paulista, Campus de Rio Claro, Departamento de Geografia, Av. 24A, 1515
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas, UNESP - Universidade Estadual Paulista, Campus de Rio Claro, Departamento de Geografia, Av. 24A, 1515
dc.format.extent13-24
dc.identifierhttp://dx.doi.org/10.1590/1809-4392201500835
dc.identifier.citationActa Amazonica, v. 46, n. 1, p. 13-24, 2016.
dc.identifier.doi10.1590/1809-4392201500835
dc.identifier.fileS0044-59672016000100013.pdf
dc.identifier.issn0044-5967
dc.identifier.scieloS0044-59672016000100013
dc.identifier.scopus2-s2.0-84945291652
dc.identifier.urihttp://hdl.handle.net/11449/172156
dc.language.isoeng
dc.relation.ispartofActa Amazonica
dc.relation.ispartofsjr0,360
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectFlooded forest
dc.subjectLand use change
dc.subjectLandsat
dc.subjectMonitoring
dc.subjectWetlands
dc.titleReconstrução histórica de mudanças na cobertura florestal em várzeas do baixo amazonas utilizando o algoritmo landtrendrpt
dc.title.alternativeReconstructing historical forest cover change in the lower amazon floodplains using the landtrendr algorithmen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentGeografia - IGCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S0044-59672016000100013.pdf
Tamanho:
6.28 MB
Formato:
Adobe Portable Document Format