Logotipo do repositório
 

Publicação:
FEMaR: A Finite Element Machine for Regression Problems

dc.contributor.authorPereira, Danillo R. [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorSouza, Andre N. [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:48:36Z
dc.date.available2018-11-26T17:48:36Z
dc.date.issued2017-01-01
dc.description.abstractRegression-based tasks have been the forerunner regarding the application of machine learning tools in the context of data mining. Problems related to price and stock prediction, selling estimation, and weather forecasting are commonly used as benchmarking for the comparison of regression techniques, just to name a few. Neural Networks, Decision Trees and Support Vector Machines are the most widely used approaches concerning regression-oriented applications, since they can generalize well in a number of different applications. In this work, we propose an efficient and effective regression technique based on the Finite Element Method (FEM) theory, hereinafter called Finite Element Machine for Regression (FEMaR). The proposed approach has only one parameter and it has a quadratic complexity for both training and classification phases when we use basis functions that obey some properties, as well as we show the proposed approach can obtain very competitive results when compared against some state-of-the-art regression techniques.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/16250-9
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent2751-2757
dc.identifier.citation2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 2751-2757, 2017.
dc.identifier.fileWOS000426968703001.pdf
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/163969
dc.identifier.wosWOS:000426968703001
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2017 International Joint Conference On Neural Networks (ijcnn)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleFEMaR: A Finite Element Machine for Regression Problemsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.lattes8212775960494686[3]
unesp.author.orcid0000-0002-8617-5404[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000426968703001.pdf
Tamanho:
197.59 KB
Formato:
Adobe Portable Document Format
Descrição: